No Arabic abstract
We present the GALEX UV photometry of the elliptical galaxies in Abell clusters at moderate redshifts (z < 0.2) for the study of the look-back time evolution of the UV upturn phenomenon. The brightest elliptical galaxies (M_r < -22) in 12 remote clusters are compared with the nearby giant elliptical galaxies of comparable optical luminosity in the Fornax and Virgo clusters. The sample galaxies presented here appear to be quiescent without signs of massive star formation or strong nuclear activity, and show smooth, extended profiles in their UV images indicating that the far-UV (FUV) light is mostly produced by hot stars in the underlying old stellar population. Compared to their counterparts in nearby clusters, the FUV flux of cluster giant elliptical galaxies at moderate redshifts fades rapidly with ~ 2 Gyrs of look-back time, and the observed pace in FUV - V color evolution agrees reasonably well with the prediction from the population synthesis models where the dominant FUV source is hot horizontal-branch stars and their progeny. A similar amount of color spread (~ 1 mag) in FUV - V exists among the brightest cluster elliptical galaxies at z ~ 0.1, as observed among the nearby giant elliptical galaxies of comparable optical luminosity.
In order to investigate the origin of the far-UV (FUV) flux from the early-type galaxies, Galaxy Evolution Explorer (GALEX) is collecting the UV data for the elliptical-rich clusters at moderate redshifts (z < 0.2) where the dominant FUV source is predicted to be hot horizontal-branch (HB) stars and their post-HB progeny. Here we present our first result for the early-type galaxies in Abell 2670 at z = 0.076. Compared to NGC 1399, a nearby giant elliptical galaxy in the Fornax cluster, it appears that the rest-frame FUV - V color of the giant ellipticals gets redder by ~ 0.7 mag at the distance of Abell 2670 (z = 0.076; look-back time ~ 1.0 Gyr). Although a detailed comparison with the models is postponed until more cluster data are accumulated, it is interesting to note that this value is consistent with the variation predicted by the population synthesis models where the mean temperature of HB stars declines rapidly with increasing look-back time.
[Abridged] We present K-band data for the brightest cluster galaxies (BCGs) from the ESO Distant Cluster Survey. These data are combined with photometry from Aragon-Salamanca et al. (1998) and a low-redshift comparison sample from von der Linden et al. (2007). The K-band Hubble diagram for BCGs exhibits very low scatter (~0.35mag) since z=1. The colour and $K$-band luminosity evolution of the BCGs are in good agreement with passively-evolving stellar populations formed at z>2. We do not detect any significant change in the stellar mass of the BCG since z~1. These results do not seem to depend on the velocity dispersion of the parent cluster. There is a correlation between the 1D velocity dispersion of the clusters and the K-band luminosity of the BCGs (after correcting for passive evolution). The clusters with large velocity dispersions tend to have brighter BCGs, i.e., BCGs with larger stellar masses. This dependency, although significant, is relatively weak: the stellar mass of the BCGs changes only by ~70% over a two-order-of-magnitude range in cluster mass. This dependency doesnt change significantly with redshift. The models of De Lucia & Blaizot (2007) predict colours which are in reasonable agreement with the observations because the growth in stellar mass is dominated by the accretion of old stars. However, the stellar mass in the model BCGs grows by a factor of 3-4 since z=1, a growth rate which seems to be ruled out by the observations. The models predict a dependency between the BCGs stellar mass and the velocity dispersion of the parent cluster in the same sense as the data, but the dependency is significantly stronger than observed. However, one major difficulty in this comparison is that we have measured fixed metric aperture magnitudes while the models compute total luminosities.
We present a multiwavelength morphological analysis of star forming clouds and filaments in the central ($< 50$ kpc) regions of 16 low redshift ($z<0.3$) cool core brightest cluster galaxies (BCGs). New Hubble Space Telescope (HST) imaging of far ultraviolet continuum emission from young ($sim 10$ Myr), massive ($> 5$ Msol) stars reveals filamentary and clumpy morphologies, which we quantify by means of structural indices. The FUV data are compared with X-ray, Ly$alpha$, narrowband H$alpha$, broadband optical/IR, and radio maps, providing a high spatial resolution atlas of star formation locales relative to the ambient hot ($sim10^{7-8}$ K) and warm ionised ($sim 10^4$ K) gas phases, as well as the old stellar population and radio-bright AGN outflows. Nearly half of the sample possesses kpc-scale filaments that, in projection, extend toward and around radio lobes and/or X-ray cavities. These filaments may have been uplifted by the propagating jet or buoyant X-ray bubble, or may have formed {it in situ} by cloud collapse at the interface of a radio lobe or rapid cooling in a cavitys compressed shell. The morphological diversity of nearly the entire FUV sample is reproduced by recent hydrodynamical simulations in which the AGN powers a self-regulating rain of thermally unstable star forming clouds that precipitate from the hot atmosphere. In this model, precipitation triggers where the cooling-to- freefall time ratio is $t_{mathrm{cool}}/t_{mathrm{ff}}sim 10$. This condition is roughly met at the maxmial projected FUV radius for more than half of our sample, and clustering about this ratio is stronger for sources with higher star formation rates.
The K-band Hubble diagram of Brightest Cluster Galaxies (BCGs) is presented for a large, X-ray selected cluster sample extending out to z = 0.8. The controversy over the degree of BCG evolution is shown to be due to sample selection, since the BCG luminosity depends upon the cluster environment. Selecting only the most X-ray luminous clusters produces a BCG sample which shows, under the assumption of an Einstein-de Sitter cosmology, significantly less mass growth than that predicted by current semi-analytic galaxy formation models, and significant evidence of any growth only if the dominant stellar population of the BCGs formed relatively recently (z <= 2.6).
[Abridged] We studied the size-surface brightness and the size-mass relations of a sample of 16 cluster elliptical galaxies in the mass range 10^{10}-2x10^{11} M_sun which were morphologically selected in the cluster RDCS J0848+4453 at z=1.27. Our aim is to assess whether they have completed their mass growth at their redshift or significant mass and/or size growth can or must take place until z=0 in order to understand whether elliptical galaxies of clusters follow the observed size evolution of passive galaxies. To compare our data with the local universe we considered the Kormendy relation derived from the early-type galaxies of a local Coma Cluster reference sample and the WINGS survey sample. The comparison with the local Kormendy relation shows that the luminosity evolution due to the aging of the stellar content already assembled at z=1.27 brings them on the local relation. Moreover, this stellar content places them on the size-mass relation of the local cluster ellipticals. These results imply that for a given mass, the stellar mass at z~1.3 is distributed within these ellipticals according to the same stellar mass profile of local ellipticals. We find that a pure size evolution, even mild, is ruled out for our galaxies since it would lead them away from both the Kormendy and the size-mass relation. If an evolution of the effective radius takes place, this must be compensated by an increase in the luminosity, hence of the stellar mass of the galaxies, to keep them on the local relations. We show that to follow the Kormendy relation, the stellar mass must increase as the effective radius. However, this mass growth is not sufficient to keep the galaxies on the size-mass relation for the same variation in effective radius. Thus, if we want to preserve the Kormendy relation, we fail to satisfy the size-mass relation and vice versa.