Do you want to publish a course? Click here

Scaling relations of cluster elliptical galaxies at z~1.3. Distinguishing luminosity and structural evolution

172   0   0.0 ( 0 )
 Added by Paolo Saracco
 Publication date 2014
  fields Physics
and research's language is English
 Authors P. Saracco




Ask ChatGPT about the research

[Abridged] We studied the size-surface brightness and the size-mass relations of a sample of 16 cluster elliptical galaxies in the mass range 10^{10}-2x10^{11} M_sun which were morphologically selected in the cluster RDCS J0848+4453 at z=1.27. Our aim is to assess whether they have completed their mass growth at their redshift or significant mass and/or size growth can or must take place until z=0 in order to understand whether elliptical galaxies of clusters follow the observed size evolution of passive galaxies. To compare our data with the local universe we considered the Kormendy relation derived from the early-type galaxies of a local Coma Cluster reference sample and the WINGS survey sample. The comparison with the local Kormendy relation shows that the luminosity evolution due to the aging of the stellar content already assembled at z=1.27 brings them on the local relation. Moreover, this stellar content places them on the size-mass relation of the local cluster ellipticals. These results imply that for a given mass, the stellar mass at z~1.3 is distributed within these ellipticals according to the same stellar mass profile of local ellipticals. We find that a pure size evolution, even mild, is ruled out for our galaxies since it would lead them away from both the Kormendy and the size-mass relation. If an evolution of the effective radius takes place, this must be compensated by an increase in the luminosity, hence of the stellar mass of the galaxies, to keep them on the local relations. We show that to follow the Kormendy relation, the stellar mass must increase as the effective radius. However, this mass growth is not sufficient to keep the galaxies on the size-mass relation for the same variation in effective radius. Thus, if we want to preserve the Kormendy relation, we fail to satisfy the size-mass relation and vice versa.



rate research

Read More

We present the Kormendy and mass-size relations for early-type galaxies (ETGs) as a function of environment at z~1.3. Our sample includes 76 visually classified ETGs with masses 10^10 < M/Msun < 10^11.5, selected in the Lynx supercluster and in the GOODS/CDF-S field, 31 ETGs in clusters, 18 in groups and 27 in the field, all with multi-wavelength photometry and HST/ACS observations. The Kormendy relation, in place at z~1.3, does not depend on the environment. The mass-size relation reveals that ETGs overall appear to be more compact in denser environments: cluster ETGs have sizes on average around 30-50% smaller than those of the local universe, and a distribution with a smaller scatter, whereas field ETGs show a mass-size relation with a similar distribution than the local one. Our results imply that (1) the mass-size relation in the field did not evolve overall from z ~ 1.3 to present; this is interesting and in contrast to the trend found at higher masses from previous works; (2) in denser environments, either ETGs have increased their size by 30-50%, on average, and spread their distributions, or more ETGs have been formed within the dense environment from not ETG progenitors or larger galaxies have been accreted to a pristine compact population to reproduce the mass-size relation observed in the local Universe. Our results are driven by galaxies with masses M<2*10^11Msun and those with masses M~10^11Msun follow the same trends that the entire sample. Following Valentinuzzi et al. definition of superdense ETGs, around 35-45% of our cluster sample is made of superdense ETGs.
We present 0.2arcsec-resolution Atacama Large Millimeter/submillimeter Array observations at 870 $mu$m in a stellar mass-selected sample of 85 massive ($M_mathrm{star}>10^{11}~M_odot$) star-forming galaxies (SFGs) at z=1.9-2.6 in the 3D-HST/CANDELS fields of UDS and GOODS-S. We measure the effective radius of the rest-frame far-infrared (FIR) emission for 62 massive SFGs. They are distributed over wide ranges of FIR size from $R_mathrm{e,FIR}=$0.4 kpc to $R_mathrm{e,FIR}=$6 kpc. The effective radius of the FIR emission is smaller by a factor of 2.3$^{+1.9}_{-1.0}$ than the effective radius of the optical emission and by a factor of 1.9$^{+1.9}_{-1.0}$ smaller than the half-mass radius. Even with taking into account potential extended components, the FIR size would change by ~10%. By combining the spatial distributions of the FIR and optical emission, we investigate how galaxies change the effective radius of the optical emission and the stellar mass within a radius of 1 kpc, $M_mathrm{1kpc}$. The compact starburst puts most of massive SFGs on the mass--size relation for quiescent galaxies (QGs) at z~2 within 300 Myr if the current star formation activity and its spatial distribution are maintained. We also find that within 300 Myr, ~38% of massive SFGs can reach the central mass of $M_mathrm{1kpc}=10^{10.5}~M_odot$, which is around the boundary between massive SFGs and QGs. These results suggest an outside-in transformation scenario in which a dense core is formed at the center of a more extended disk, likely via dissipative in-disk inflows. Synchronized observations at ALMA 870 $mu$m and JWST 3-4 $mu$m will explicitly verify this scenario.
We present new gas kinematic observations with the OSIRIS instrument at the GTC for galaxies in the Cl1604 cluster system at z=0.9. These observations together with a collection of other cluster samples at different epochs analyzed by our group are used to study the evolution of the Tully-Fisher, velocity-size and stellar mass-angular momentum relations in dense environments over cosmic time. We use 2D and 3D spectroscopy to analyze the kinematics of our cluster galaxies and extract their maximum rotation velocities (Vmax). Our methods are consistently applied to all our cluster samples which make them ideal for an evolutionary comparison. Up to redshift one, our cluster samples show evolutionary trends compatible with previous observational results in the field and in accordance with semianalytical models and hydrodynamical simulations concerning the Tully-Fisher and velocity-size relations. However, we find a factor 3 drop in disk sizes and an average B-band luminosity enhancement of 2 mag by z=1.5. We discuss the role that different cluster-specific interactions may play in producing this observational result. In addition, we find that our intermediate-to-high redshift cluster galaxies follow parallel sequences with respect to the local specific angular momentum-stellar mass relation, although displaying lower angular momentum values in comparison with field samples at similar redshifts. This can be understood by the stronger interacting nature of dense environments with respect to the field.
168 - Yen-Ting Lin 2006
We study the evolution of two fundamental properties of galaxy clusters: the luminosity function (LF) and the scaling relations between the total galaxy number N (or luminosity) and cluster mass M. Using a sample of 27 clusters (0<z<0.9) with new near-IR observations and mass estimates derived from X-ray temperatures, in conjunction with data from the literature, we construct the largest sample for such studies to date. The evolution of the characteristic luminosity of the LF can be described by a passively evolving population formed in a single burst at z=1.5-2. Under the assumption that the mass-temperature relation evolves self-similarly, and after the passive evolution is accounted for, the N-M scaling shows no signs of evolution out to z=0.9. Our data provide direct constraints on halo occupation distribution models, and suggest that the way galaxies populate cluster-scale dark matter halos has not changed in the past 7 Gyr, in line with previous investigations.
We follow the structural evolution of star forming galaxies (SFGs) like the Milky Way by selecting progenitors to z~1.3 based on the stellar mass growth inferred from the evolution of the star forming sequence. We select our sample from the 3D-HST survey, which utilizes spectroscopy from the HST WFC3 G141 near-IR grism and enables precise redshift measurements for our sample of SFGs. Structural properties are obtained from Sersic profile fits to CANDELS WFC3 imaging. The progenitors of z=0 SFGs with stellar mass M=10^{10.5} Msun are typically half as massive at z~1. This late-time stellar mass assembly is consistent with recent studies that employ abundance matching techniques. The descendant SFGs at z~0 have grown in half-light radius by a factor of ~1.4 since z~1. The half-light radius grows with stellar mass as r_e M^{0.29}. While most of the stellar mass is clearly assembling at large radii, the mass surface density profiles reveal ongoing mass growth also in the central regions where bulges and pseudobulges are common features in present day late-type galaxies. Some portion of this growth in the central regions is due to star formation as recent observations of H-alpha maps for SFGs at z~1 are found to be extended but centrally peaked. Connecting our lookback study with galactic archeology, we find the stellar mass surface density at R=8 kpc to have increased by a factor of ~2 since z~1, in good agreement with measurements derived for the solar neighborhood of the Milky Way.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا