Do you want to publish a course? Click here

Polarisation studies of the prompt gamma-ray emission from GRB 041219a using the Spectrometer aboard INTEGRAL

91   0   0.0 ( 0 )
 Added by Sinead McGlynn
 Publication date 2007
  fields Physics
and research's language is English
 Authors S. McGlynn




Ask ChatGPT about the research

The spectrometer aboard INTEGRAL, SPI, has the capability to detect the signature of polarised emission from a bright gamma-ray source. GRB 041219a is the most intense burst localised by INTEGRAL and is an ideal candidate for such a study. Polarisation can be measured using multiple events scattered into adjacent detectors because the Compton scatter angle depends on the polarisation of the incoming photon. A search for linear polarisation in the most intense pulse of duration 66 seconds and in the brightest 12 seconds of GRB 041219a was performed in the 100-350keV, 100-500keV and 100keV-1MeV energy ranges. The multiple event data from the spectrometer was analysed and compared with the predicted instrument response obtained from Monte-Carlo simulations using the GEANT 4 INTEGRAL mass model. The chi^2 distribution between the real and simulated data as a function of the percentage polarisation and polarisation angle was calculated for all three energy ranges. The degree of linear polarisation in the brightest pulse of duration 66s was found to be 63+/-31% at an angle of 70+/-14 degrees in the 100-350keV energy range. The degree of polarisation was also constrained in the brightest 12s of the GRB and a polarisation fraction of 96+/-40% at an angle of 60+/-14 degrees was determined over the same energy range. However, despite extensive analysis and simulations, a systematic effect that could mimic the weak polarisation signal could not be definitively excluded. Our results over several energy ranges and time intervals are consistent with a polarisation signal of about 60% at a low level of significance (2 sigma). We conclude that the procedure described here demonstrates the effectiveness of using SPI as a polarimeter, and is a viable method of measuring polarisation levels in intense gamma--ray bursts.



rate research

Read More

Measuring the polarization of the prompt gamma-ray emission from GRBs can significantly improve our understanding of both the GRB emission mechanisms, as well as the underlying engine driving the explosion. We searched for polarization in the prompt gamma-ray emission of GRB 041219a with the SPI instrument on INTEGRAL. Using multiple-detector coincidence events in the 100--350 keV energy band, our analysis yields a polarization fraction from this GRB of 99 +- 33 %. Statistically, we cannot claim a polarization detection from this source. Moreover, different event selection criteria lead to even less significant polarization fractions, e.g. lower polarization fractions are obtained when higher energies are included in the analysis. We cannot strongly rule out the possibility that the measured modulation is dominated by instrumental systematics. Therefore, SPI observations of GRB 041219a do not significantly constrain GRB models. However, this measurement demonstrates the capability of SPI to measure polarization, and the techniques developed for this analysis.
69 - D. R. Willis 2005
The true nature of the progenitor to GRBs remains elusive; one characteristic that would constrain our understanding of the GRB mechanism considerably is gamma-ray polarimetry measurements of the initial burst flux. We present a method that interprets the prompt GRB flux as it Compton scatters off the Earths atmosphere, based on detailed modelling of both the Earths atmosphere and the orbiting detectors. The BATSE mission aboard the textit{CGRO} monitored the whole sky in the 20 keV - 1 MeV energy band continuously from April 1991 until June 2000. We present the BATSE Albedo Polarimetry System (BAPS), and show that GRB 930131 and GRB 960924 provide evidence of polarisation in their prompt flux that is consistent with degrees of polarisation of $Pi>35$% and $Pi>50$% respectively. While the evidence of polarisation is strong, the method is unable to strongly constrain the degree of polarisation beyond a systematics based estimation. Hence the implications on GRB theory are unclear, and further measurements essential.
The long, bright gamma-ray burst GRB 070125 was localized by the Interplanetary Network. We present light curves of the prompt gamma-ray emission as observed by Konus-WIND, RHESSI, Suzaku-WAM, and textit{Swift}-BAT. We detail the results of joint spectral fits with Konus and RHESSI data. The burst shows moderate hard-to-soft evolution in its multi-peaked emission over a period of about one minute. The total burst fluence as observed by Konus is $1.79 times 10^{-4}$ erg/cm$^2$ (20 keV--10 MeV). Using the spectroscopic redshift $z=1.548$, we find that the burst is consistent with the ``Amati $E_{peak,i}-E_{iso}$ correlation. Assuming a jet opening angle derived from broadband modeling of the burst afterglow, GRB 070125 is a significant outlier to the ``Ghirlanda $E_{peak,i}-E_gamma$ correlation. Its collimation-corrected energy release $E_gamma = 2.5 times 10^{52}$ ergs is the largest yet observed.
SPI, the Spectrometer on board the ESA INTEGRAL satellite, to be launched in October 2002, will study the gamma-ray sky in the 20 keV to 8 MeV energy band with a spectral resolution of 2 keV for photons of 1 MeV, thanks to its 19 germanium detectors spanning an active area of 500 cm2. A coded mask imaging technique provides a 2 deg angular resolution. The 16 deg field of view is defined by an active BGO veto shield, furthermore used for background rejection. In April 2001 the flight model of SPI underwent a one-month calibration campaign at CEA in Bruy`eres le Ch^atel using low intensity radioactive sources and the CEA accelerator for homogeneity measurements and high intensity radioactive sources for imaging performance measurements. After integration of all scientific payloads (the spectrometer SPI, the imager IBIS and the monitors JEM-X and OMC) on the INTEGRAL satellite, a cross-calibration campaign has been performed at the ESA center in Noordwijk. A set of sources has been placed in the field of view of the different instruments in order to compare their performances and determine their mutual influence. Some of those sources had already been used in Bruy`eres during the SPI standalone test. For the lowest energy band calibration an X-ray generator has been used. We report on the scientific goals of this calibration activity, and present the measurements performed as well as some preliminary results.
Visible afterglow counterparts have now been detected for two GRBs (970228 and 970508) but are absent, with $L_{opt}/L_{gamma}$ ratios at least two orders of magnitude lower, for other GRBs, e.g., 970828. The causes of this variation are unknown. Any correspondence which could be discovered between the gamma-ray properties of a GRB and its $L_{opt}/L_{gamma}$ would be useful, both in determining the GRB mechanisms, and in allocating resources for counterpart searches and studies. This paper presents the gamma-ray spectra of GRB 970228 as measured by the Transient Gamma-Ray Spectrometer and comments on characteristics of this GRB compared to others that do and do not have observable counterparts.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا