Do you want to publish a course? Click here

Investigation for the puzzling abundance pattern of the neutron-capture elements in the ultra metal-poor star: CS 30322-023

52   0   0.0 ( 0 )
 Added by Wenyuan Cui
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The s-enhanced and very metal-poor star CS 30322-023 shows a puzzling abundance pattern of the neutron-capture elements, i.e. several neutron-capture elements such as Ba, Pb etc. show enhancement, but other neutron-capture elements such as Sr, Eu etc. exhibit deficient with respect to iron. The study to this sample star could make people gain a better understanding of s- and r-process nucleosynthesis at low metallicity. Using a parametric model, we find that the abundance pattern of the neutron-capture elements could be best explained by a star that was polluted by an AGB star and the CS 30322-023 binary system formed in a molecular cloud which had never been polluted by r-process material. The lack of r-process material also indicates that the AGB companion cannot have undergone a type-1.5 supernova, and thus must have had an initial mass below 4.0M$_odot$, while the strong N overabundance and the absence of a strong C overabundance indicate that the companions initial mass was larger than 2.0M$_odot$. The smaller s-process component coefficient of this star illustrates that there is less accreted material of this star from the AGB companion, and the sample star should be formed in the binary system with larger initial orbital separation where the accretion-induced collapse (AIC) mechanism can not work.

rate research

Read More

High-resolution spectra obtained with three ground-based facilities and the Hubble Space Telescope (HST) have been combined to produce a new abundance analysis of CS 22892-052, an extremely metal-poor giant with large relative enhancements of neutron-capture elements. A revised model stellar atmosphere has been derived with the aid of a large number of Fe-peak transitions, including both neutral and ionized species of six elements.Several elements, including Mo, Lu, Au, Pt and Pb, have been detected for the first time in CS 22892-052, and significant upper limits have been placed on the abundances of Ga, Ge, Cd, Sn, and U in this star. In total, abundance measurements or upper limits have been determined for 57 elements, far more than previously possible. New Be and Li detections in CS 22892-052 indicate that the abundances of both these elements are significantly depleted compared to unevolved main-sequence turnoff stars of similar metallicity. Abundance comparisons show an excellent agreement between the heaviest n-capture elements (Z >= 56) and scaled solar system r-process abundances, confirming earlier results for CS 22892-052 and other metal-poor stars. New theoretical r-process calculations also show good agreement with CS 22892-052 abundances as well as the solar r-process abundance components.The abundances of lighter elements (40<= Z <= 50), however, deviate from the same scaled abundance curves that match the heavier elements, suggesting different synthesis conditions or sites for the low-mass and high-mass ends of the abundance distribution. The detection of Th and the upper limit on the U abundance together imply a lower limit of 10.4 Gyr on the age of CS 22892-052, quite consistent with the Th/Eu age estimate of 12.8 +/- ~= 3 Gyr. An average of several chronometric ratios yields an age 14.2 +/- ~= 3 Gyr.
We identified 8 additional stars as members of the Helmi stream (HStr) in the combined GALAH+ DR3 and $Gaia$ EDR3 catalog. By consistently reevaluating claimed members from the literature, we consolidate a sample of 22 HStr stars with parameters determined from high-resolution spectroscopy and spanning a considerably wider (by $sim$0.5 dex) metallicity interval ($-2.5 lesssim rm[Fe/H] < -1.0$) than previously reported. Our study focuses on $alpha$ (Mg and Ca) and neutron-capture (Ba and Eu) elements. We find that the chemistry of HStr is typical of dwarf spheroidal (dSph) galaxies, in good agreement with previous $N$-body simulations of this merging event. Stars of HStr constitute a clear declining sequence in $rm[alpha/Fe]$ for increasing metallicity up to $rm[Fe/H] sim -1.0$. Moreover, stars of HStr show a median value of $+$0.5 dex for $rm[Eu/Fe]$ with a small dispersion ($pm$0.1 dex). Every star analyzed with $rm[Fe/H] < -1.2$ belong to the $r$-process enhanced ($rm[Eu/Fe] > +0.3$ and $rm[Ba/Eu] < 0.0$) metal-poor category, providing remarkable evidence that, at such low-metallicity regime, stars of HStr experienced enrichment in neutron-capture elements predominantly via $r$-process nucleosynthesis. Finally, the extended metallicity range also suggests an increase in $rm[Ba/Eu]$ for higher $rm[Fe/H]$, in conformity with other surviving dwarf satellite galaxies of the Milky Way.
The close relationship between the nature of the Triangulum-Andromeda (TriAnd) overdensity and the Galactic disk has become increasingly evident in recent years. However, the chemical pattern of this overdensity (R$_{GC}$ = 20 - 30 kpc) is unique and differs from what we know of the local disk. In this study, we analyze the chemical abundances of five $alpha$ elements (Mg, O, Si, Ca, and Ti) in a sample of stars belonging to the TriAnd overdensity, including stars with [Fe/H] $<$ $-$1.2, to investigate the evolution of the $alpha$ elements with metallicity. High-resolution spectra from Gemini North with GRACES were analyzed. Overall, the TriAnd population presents an $alpha$-element pattern that differs from that of the local disk; the TriAnd stars fall in between the local disk and the dwarf galaxies in the [X/Fe] vs. [Fe/H] plane. The high [Mg/Fe] ratios obtained for the lower metallicity TriAnd stars may indicate a roughly parallel sequence to the Milky Way local disk at lower values of [Fe/H], revealing a knee shifted towards lower metallicities for the TriAnd population. Similar behavior is also exhibited in the [Ca/Fe] and [Si/Fe] ratios. However, for O and Ti the behavior of the [X/Fe] ratios shows a slight decay with decreasing metallicity. Our results reinforce the TriAnd overdensity as a unique stellar population of the Milky Way, with an abundance pattern that is different from all stellar populations studied to date. The complete understanding of the complex TriAnd population will require high-resolution spectroscopic observations of a larger sample of TriAnd stars.
426 - B. Barbuy , M. Spite , F. Spite 2004
We have carried out a new determination of abundances in the very metal-poor CH/CN strong stars CS 29497-34 and CS 22948-27, using high-resolution spectra obtained with the HARPS spectrograph at the 3.6m telescope of ESO, La Silla, that covers the range 400 - 690 nm at a resolution of R = 100,000. Both stars are found to be long period binaries. It is confirmed that the abundance patterns show an enhancement of all the alpha-elements (like Mg, Ca), of the proton capture elements (like Na and Al) and a strong enrichment in r and s process elements, where the s-enrichment is probably due to a mass transfer episode from a companion in its AGB phase. The possible origins of the abundance pattern and especially of the strong enhancement of both s and r elements are discussed.
It is unknown whether or not low-mass stars can form at low metallicity. While theoretical simulations of Population III (Pop III) star formation show that protostellar disks can fragment, it is impossible for those simulations to discern if those fragments survive as low-mass stars. We report the discovery of a low-mass star on a circular orbit with orbital period P = 34.757 +/- 0.010 days in the ultra metal-poor (UMP) single-lined spectroscopic binary system 2MASS J18082002--5104378. The secondary star 2MASS J18082002--5104378 B has a mass M_2 = 0.14_{-0.01}^{+0.06} M_Sun, placing it near the hydrogen-burning limit for its composition. The 2MASS J18082002--5104378 system is on a thin disk orbit as well, making it the most metal-poor thin disk star system by a considerable margin. The discovery of 2MASS J18082002--5104378 B confirms the existence of low-mass UMP stars and its short orbital period shows that fragmentation in metal-poor protostellar disks can lead to the formation and survival of low-mass stars. We use scaling relations for the typical fragment mass and migration time along with published models of protostellar disks around both UMP and primordial composition stars to explore the formation of low-mass Pop III stars via disk fragmentation. We find evidence that the survival of low-mass secondaries around solar-mass UMP primaries implies the survival of solar-mass secondaries around Pop III primaries with masses 10 M_Sun < M_Star < 100 M_Sun. If true, this inference suggests that solar-mass Pop III stars formed via disk fragmentation could survive to the present day.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا