No Arabic abstract
We identified 8 additional stars as members of the Helmi stream (HStr) in the combined GALAH+ DR3 and $Gaia$ EDR3 catalog. By consistently reevaluating claimed members from the literature, we consolidate a sample of 22 HStr stars with parameters determined from high-resolution spectroscopy and spanning a considerably wider (by $sim$0.5 dex) metallicity interval ($-2.5 lesssim rm[Fe/H] < -1.0$) than previously reported. Our study focuses on $alpha$ (Mg and Ca) and neutron-capture (Ba and Eu) elements. We find that the chemistry of HStr is typical of dwarf spheroidal (dSph) galaxies, in good agreement with previous $N$-body simulations of this merging event. Stars of HStr constitute a clear declining sequence in $rm[alpha/Fe]$ for increasing metallicity up to $rm[Fe/H] sim -1.0$. Moreover, stars of HStr show a median value of $+$0.5 dex for $rm[Eu/Fe]$ with a small dispersion ($pm$0.1 dex). Every star analyzed with $rm[Fe/H] < -1.2$ belong to the $r$-process enhanced ($rm[Eu/Fe] > +0.3$ and $rm[Ba/Eu] < 0.0$) metal-poor category, providing remarkable evidence that, at such low-metallicity regime, stars of HStr experienced enrichment in neutron-capture elements predominantly via $r$-process nucleosynthesis. Finally, the extended metallicity range also suggests an increase in $rm[Ba/Eu]$ for higher $rm[Fe/H]$, in conformity with other surviving dwarf satellite galaxies of the Milky Way.
We investigate the origin of the abundance ratios and scatter of $alpha$- and neutron-capture elements of old, metal-poor stars, using cosmological, hydrodynamical simulations of galaxy formation. For this, we implement a novel treatment for the production and distribution of chemical products of Type II supernovae, which considers the effects of the rotation of massive stars on the chemical yields and the effects of the different life-times of stars that are progenitors of this type of supernovae. We focus on the stellar halo of a Milky Way-mass galaxy, studying the abundances and scatter of [O/Fe], [Mg/Fe], [Si/Fe], [Sr/Fe], [Eu/Fe] and [Ba/Fe]. Our model is able, for the first time in a cosmological simulation, to describe at the same time the low scatter in the abundances of $alpha$-elements and the higher scatter associated to neutron-capture elements in the halo stars, as suggested by observations of the Milky Way. We also reproduce the scatter observed in the [Sr/Ba] ratio, which results from the treatment of the fast-rotating stars and the dependence of the chemical yields on the metallicity, mass and rotational velocities. Our simulations show that such scatter patterns appear naturally if the different ejection times associated to stars of different mass are properly described, without the need to invoke for additional mixing mechanisms or a distinct treatment of the alpha- and neutron-capture elements. Simulations of this type will help characterizing and identifying the past accretion debris as well as the pristine in-situ populations in the Galaxy unveiled by Gaia and spectroscopic data.
We present an extensive analysis of the gas-phase abundances and depletion behaviors of neutron-capture elements in the interstellar medium (ISM). Column densities (or upper limits to the column densities) of Ga II, Ge II, As II, Kr I, Cd II, Sn II, and Pb II are determined for a sample of 69 sight lines with high- and/or medium-resolution archival spectra obtained with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope. An additional 59 sight lines with column density measurements reported in the literature are included in our analysis. Parameters that characterize the depletion trends of the elements are derived according to the methodology developed by Jenkins (2009; arXiv:0905.3173). (In an appendix, we present similar depletion results for the light element B.) The depletion patterns exhibited by Ga and Ge comport with expectations based on the depletion results obtained for many other elements. Arsenic exhibits much less depletion than expected, and its abundance in low-depletion sight lines may even be supersolar. We confirm a previous finding by Jenkins (2009; arXiv:0905.3173) that the depletion of Kr increases as the overall depletion level increases from one sight line to another. Cadmium shows no such evidence of increasing depletion. We find a significant amount of scatter in the gas-phase abundances of Sn and Pb. For Sn, at least, the scatter may be evidence of real intrinsic abundance variations due to s-process enrichment combined with inefficient mixing in the ISM.
The close relationship between the nature of the Triangulum-Andromeda (TriAnd) overdensity and the Galactic disk has become increasingly evident in recent years. However, the chemical pattern of this overdensity (R$_{GC}$ = 20 - 30 kpc) is unique and differs from what we know of the local disk. In this study, we analyze the chemical abundances of five $alpha$ elements (Mg, O, Si, Ca, and Ti) in a sample of stars belonging to the TriAnd overdensity, including stars with [Fe/H] $<$ $-$1.2, to investigate the evolution of the $alpha$ elements with metallicity. High-resolution spectra from Gemini North with GRACES were analyzed. Overall, the TriAnd population presents an $alpha$-element pattern that differs from that of the local disk; the TriAnd stars fall in between the local disk and the dwarf galaxies in the [X/Fe] vs. [Fe/H] plane. The high [Mg/Fe] ratios obtained for the lower metallicity TriAnd stars may indicate a roughly parallel sequence to the Milky Way local disk at lower values of [Fe/H], revealing a knee shifted towards lower metallicities for the TriAnd population. Similar behavior is also exhibited in the [Ca/Fe] and [Si/Fe] ratios. However, for O and Ti the behavior of the [X/Fe] ratios shows a slight decay with decreasing metallicity. Our results reinforce the TriAnd overdensity as a unique stellar population of the Milky Way, with an abundance pattern that is different from all stellar populations studied to date. The complete understanding of the complex TriAnd population will require high-resolution spectroscopic observations of a larger sample of TriAnd stars.
We analyze chemical abundances of stars in the Sagittarius (Sgr) tidal stream using high-resolution Gemini+GRACES spectra of 42 members of the highest surface brightness portions of both the trailing and leading arms. Targets were chosen using a 2MASS+WISE color-color selection, combined with LAMOST radial velocities. In this study, we analyze [Fe/H] and alpha-elements produced by both hydrostatic (O, Mg) and explosive (Si, Ca, Ti) nucleosynthetic processes. The average [Fe/H] for our Sgr stream stars is lower than that for stars in the Sgr core, and stars in the trailing and leading arms show systematic differences in [Fe/H]. Both hydrostatic and explosive elements are depleted relative to Milky Way (MW) disk and halo stars, with a larger gap between the MW trend and Sgr stars for the hydrostatic elements. Chemical abundances of Sgr stream stars show similar patterns to those measured in the core of the Sgr dSph. We explore the ratio of hydrostatic to explosive alpha-elements [$alpha_{rm h/ex}$] (which we refer to as the HEx ratio). Our observed HEx ratio trends for Sgr debris are deficient relative to MW stars. Via simple chemical evolution modeling, we show that these HEx ratio patterns are consistent with a Sgr IMF that lacks the most massive stars. This study provides a link between the chemical properties in the intact Sgr core and the significant portion of the Sgr systems luminosity that is estimated to currently reside in the streams.
The enrichment history of heavy neutron-capture elements in the Milky Way disc provides fundamental information about the chemical evolution of our Galaxy and about the stellar sources that made those elements. In this work we give new observational data for Sr, the element at the first neutron-shell closure beyond iron, N=50, based on the analysis of the high resolution spectra of 276 Galactic disc stars. The Sr abundance was derived by comparing the observed and synthetic spectra in the region of the SrI 4607 A line, making use of the LTE approximation. NLTE corrections lead to an increase of the abundance estimates obtained under LTE, but for these lines they are minor near solar metallicity. The average correction that we find is 0.151 dex. The star that is mostly affected is HD 6582, with a 0.244 dex correction. The behavior of the Sr abundance as a function of metallicity is discussed within a stellar nucleosynthesis context, in comparison with the abundance of the heavy neutron-capture elements Ba (Z=56) and Eu (Z=63). The comparison of the observational data with the current GCE models confirm that the s-process contributions from Asymptotic Giant Branch stars and from massive stars are the main sources of Sr in the Galactic disc and in the Sun, while different nucleosynthesis sources can explain the high [Sr/Ba] and [Sr/Eu] ratios observed in the early Galaxy.