Do you want to publish a course? Click here

White Dwarf cooling Sequences, II: luminosity functions

66   0   0.0 ( 0 )
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Given the importance of white dwarfs (WDs) in many fields of modern astrophysics, the precise knowledge of the actual degree of accuracy of the associated theoretical predictions is a primary task. In the first paper of a series dedicated to the modeling of WD structure and evolution we discussed the limits of the available theoretical studies of cooling sequences. In the present work we extend this analysis to isochrones and luminosity functions of WDs belonging to old stellar systems, like globular or old disk clusters. The discussion is focused on the most common DA, those with a CO core and an H-rich envelope. We discuss, in particular, the variation of the age derived from the observed WD sequence caused by different assumptions about the conductive opacity as well as that induced by changing the carbon abundance in the core. The former causes a global uncertainty of the order of 10% and the latter of about 5%. We discuss different choices of the initial-to-final mass relation, which induces an uncertainty of 8% on the GC age estimate.



rate research

Read More

119 - Harvey B. Richer 2013
Using deep Hubble Space Telescope imaging, color-magnitude diagrams are constructed for the globular clusters 47 Tuc and NGC 6397. As expected, because of its lower metal abundance, the main sequence of NGC 6397 lies well to the blue of that of 47 Tuc. A comparison of the white dwarf cooling sequences of the two clusters, however, demonstrates that these sequences are indistinguishable over most of their loci - a consequence of the settling out of heavy elements in the dense white dwarf atmosphere and the near equality of their masses. Lower quality data on M4 continues this trend to a third cluster whose metallicity is intermediate between these two. While the path of the white dwarfs in the color-magnitude diagram is nearly identical in 47 Tuc and NGC 6397, the numbers of white dwarfs along the path are not. This results from the relatively rapid relaxation in NGC 6397 compared to 47 Tuc and provides a cautionary note that simply counting objects in star clusters in random locations as a method of testing stellar evolutionary theory is likely dangerous unless dynamical considerations are included.
We present a new set of cooling models and isochrones for both H- and He-atmosphere white dwarfs, incorporating accurate boundary conditions from detailed model atmosphere calculations, and carbon-oxygen chemical abundance profiles based on updated stellar evolution calculations from the BaSTI stellar evolution archive - a theoretical data center for the Virtual Observatory. We discuss and quantify the uncertainties in the cooling times predicted by the models, arising from the treatment of mixing during the central H- and He-burning phases, number of thermal pulses experienced by the progenitors, progenitor metallicity and the $^{12}C(alpha,gamma)^{16}O$ reaction rate. The largest sources of uncertainty turn out to be related to the treatment of convection during the last stages of the progenitor central He-burning phase, and the $^{12}C(alpha,gamma)^{16}O$ reaction rate. We compare our new models to previous calculations performed with the same stellar evolution code, and discuss their application to the estimate of the age of the solar neighborhood, and the interpretation of the observed number ratios between H- and He-atmosphere white dwarfs. The new white dwarf sequences and an extensive set of white dwarf isochrones that cover a large range of ages and progenitor metallicities are made publicly available at the official BaSTI website.
A large sample of white dwarfs is selected by both proper motion and colours from the Pan-STARRS 1 3{pi} Steradian Survey Processing Version 2 to construct the White Dwarf Luminosity Functions of the discs and halo in the solar neighbourhood. Four-parameter astrometric solutions were recomputed from the epoch data. The generalised maximum volume method is then used to calculate the density of the populations. After removal of crowded areas near the Galactic plane and centre, the final sky area used by this work is 7.833 sr, which is 83% of the 3{pi} sky and 62% of the whole sky. By dividing the sky using Voronoi tessellation, photometric and astrometric uncertainties are recomputed at each step of the integration to improve the accuracy of the maximum volume. Interstellar reddening is considered throughout the work. We find a disc-to-halo white dwarf ratio of about 100.
118 - L. R. Bedin 2005
In the old, populous, and metal-rich open cluster NGC 6791 we have used deep HST/ACS images to track the white dwarf cooling sequence down to m_F606W~28.5. The white dwarf luminosity function shows a well defined peak at m_F606W~27.4, and a bending to the blue in the color--magnitude diagram. If this peak corresponds to the end of the white dwarf cooling sequence the comparison with theoretical isochrones provides a cluster age estimate of ~2.4 Gyr, in sharp contrast with the age of 8--9 Gyr inferred from the main-sequence turn-off. If the end is at fainter magnitudes, the peak at m_F606W~27.4 is even more enigmatic. We discuss possible causes, none of them very convincing.
188 - Harvey B. Richer 1999
Using a new grid of models of cooling white dwarfs, we calculate isochrones and luminosity functions in the Johnson-Kron/Cousins and HST filter sets for systems containing old white dwarfs. These new models incorporate a non-grey atmosphere which is necessary to properly describe the effects of molecular opacity at the cool temperatures of old white dwarfs. The various functions calculated and extensively tabulated and plotted are meant to be as utilitarian as possible for observers so all results are listed in quantities that observers will obtain. The tables and plots developed should eventually prove critical in interpreting the results of HSTs Advanced Camera observations of the oldest white dwarfs in nearby globular clusters, in understanding the results of searches for old white dwarfs in the Galactic halo, and in determining ages for star clusters of all ages using white dwarfs. As a practical application we demonstrate the use of these results by deriving the white dwarf cooling age of the old Galactic cluster M67.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا