No Arabic abstract
The Parkes-MIT-NRAO (PMN) radio survey has been used to generate a quasi all-sky study of Galactic Supernova Remnants (SNRs) at a common frequency of 4.85 GHz. We present flux densities estimated for the sample of 110 Southern Galactic SNRs (up to Dec = - 65 deg.) observed with the Parkes 64-m radio telescope and an additional sample of 54 from the Northern PMN (up to Dec = +64 deg.) survey undertaken with the Green Bank 43-m (20 SNRs) and 91-m (34 SNRs) radio telescopes. Out of this total sample of 164 selected SNRs (representing 71% of the 231 known SNRs in the Green catalogue) we consider 138 to provide reliable estimates of flux density and surface brightness distribution. This sub-sample represents those SNRs which fall within carefully chosen selection criteria which minimises the effects of the known problems in establishing reliable fluxes from the PMN survey data. Our selection criteria are based on a judicious restriction of source angular size and telescope beam together with careful evaluation of fluxes on a case by case basis. This gives confidence in the newly derived PMN fluxes when the selection criteria are respected. We find a sharp drop off in the flux densities for Galactic SNRs beyond 4 Jy and then a fairly flat distribution from 5-9 Jy, a slight decline and a further flat distribution from 9-20 Jy though the numbers of SNR in each Jy bin are low. We also re-visit the contentious Sigma-D relation to determine a new power law index for a sub-sample of shell type SNRs which yields beta= -2.2 +/- 0.6. This new evaluation of the Sigma-D relation, applied to the restricted sample, provides new distance estimates and their Galactic scale height distribution. We find a peak in the SNR distribution between 7-11 kpc with most restricted to +/- 100 pc Galactic scale height.
We present the analysis of a CCD survey of 31 nearby (<= 110 Mpc) edge-on spiral galaxies. The three-dimensional one-component best fit models provide their disk-scalelengths h and for the first time their disk cut-off radii R_{co}. We confirm for this sample the existence of such sharp truncations, and find a significantly lower mean value of the distance independent ratio R_{co}/h =2.9 +- 0.7 than the standard value of 4.5 often used in the literature. Our data show no correlation of these parameters with Hubble type, whereas we report a correlation between R_{co}/h and the distance based scalelength in linear units. Compared to the Milky Way we find only lower values of R_{co}/h, explained either by possible selection effects or by the completely different techniques used. We discuss our data in respect to present models for the origin of the cut-off radii, either as a relict of the galaxy formation process, or as an evolutionary phenomenon.
We present a catalogue of 18 new Galactic supernova remnants (SNRs) uncovered in the optical regime as filamentary emissions and extended nebulosities on images of the Anglo Australian Observatory/United Kingdom Schmidt Telescope (AAO/UKST) HAlpha survey of the southern Galactic plane. Our follow-up spectral observations confirmed classical optical SNR emission lines for these 18 structures via detection of very strong [SII] at 6717 and 6731A relative to HAlpha ([SII]/HAlpha> 0.5). Morphologically, 10 of these remnants have coherent, extended arc or shell structures, while the remaining objects are more irregular in form but clearly filamentary in nature, typical of optically detected SNRs. In 11 cases there was a clear if not complete match between the optical and radio structures with H filamentary structures registered inside and along the presumed radio borders. Additionally, ROSAT X-ray sources were detected inside the optical/radio borders of 11 of these new remnants and 3 may have an associated pulsar. The multi-wavelength imaging data and spectroscopy together present strong evidence to confirm identification of 18 new, mostly senile Galactic SNRs. This includes G288.7-6.3, G315.1+2.7 and G332.5-5.6, identified only as possible remnants from preliminary radio observations. We also confirm existence of radio quiet but optically active supernova remnants.
We have investigated the magneto-ionic turbulence in the interstellar medium through spatial gradients of the complex radio polarization vector in the Canadian Galactic Plane Survey (CGPS). The CGPS data cover 1300 square-degrees, over the range ${53^{circ}}leq{ell}leq{192^{circ}}$, ${-3^{circ}}leq{b}leq{5^{circ}}$ with an extension to ${b}={17.5^{circ}}$ in the range ${101^{circ}}leq{ell}leq{116^{circ}}$, and arcminute resolution at 1420 MHz. Previous studies found a correlation between the skewness and kurtosis of the polarization gradient and the Mach number of the turbulence, or assumed this correlation to deduce the Mach number of an observed turbulent region. We present polarization gradient images of the entire CGPS dataset, and analyze the dependence of these images on angular resolution. The polarization gradients are filamentary, and the length of these filaments is largest towards the Galactic anti-center, and smallest towards the inner Galaxy. This may imply that small-scale turbulence is stronger in the inner Galaxy, or that we observe more distant features at low Galactic longitudes. For every resolution studied, the skewness of the polarization gradient is influenced by the edges of bright polarization gradient regions, which are not related to the turbulence revealed by the polarization gradients. We also find that the skewness of the polarization gradient is sensitive to the size of the box used to calculate the skewness, but insensitive to Galactic longitude, implying that the skewness only probes the number and magnitude of the inhomogeneities within the box. We conclude that the skewness and kurtosis of the polarization gradient are not ideal statistics for probing natural magneto-ionic turbulence.
We derive the $Sigma$-$D$ relation of Galactic supernova remnants of shell-type separately at adiabatic-phase and at radiative-phase through two sets of different formulas, considering the different physical processes of shell-type remnants at both stages. Also statistics on Galactic shell-type remnants about 57 was made. Then we do some comparison with other results obtained before. It shows that all the best fit lines in the $Sigma$-$D$ relation plots newly are to some extent flatter than those derived by some authors at early time. Our theoretical and statistical outcomes are in somewhat good consistency.
During detailed searches for new Galactic supernova remnants (SNRs) in the Anglo Australian Observatory/United Kingdom Schmidt Telescope (AAO/UKST) HAlpha survey of the southern Galactic plane, we also uncovered, for the first time, possible associated HAlpha emission in the vicinity of about 24 known Galactic SNRs previously known solely from radio or X-ray observations.The possible optical counterparts to these known SNR were detected due to the 1 arcsecond resolution and 5 Rayleigh sensitivity of this HAlpha survey. The newly discovered emission frequently exhibits the typical filamentary form of other optically detected SNRs although sometimes the HAlpha emission clouds or fragmented filaments largely inside an SNR extend over the radio border. It is true that superposition of general diffuse and extended Galactic emission in the region of these remnants is a complicating factor, but for many optical candidates the HAlpha emission provides an excellent morphological and positional match to the observed radio emission so that an association seems clear. We have already published HAlpha images and confirmatory spectral observations for several of the best optical counterparts to known SNRs but for completeness and convenience we include them in our complete catalogue of previously known radio detected SNRs for which we have now uncovered HAlpha optical emission. For better visualisation of the optical emissions from these faint supernova remnants and to enhance some low surface-brightness features we also present quotient images of the HAlpha data divided by the accompanying broad-band short red (SR) data. Out of 274 Galactic SNRs currently catalogued and detected in the radio only ~20 had previous optical counterparts. We may have now increased this by a further third by adding a further 24 candidate optical counterparts.