No Arabic abstract
We present the analysis of a CCD survey of 31 nearby (<= 110 Mpc) edge-on spiral galaxies. The three-dimensional one-component best fit models provide their disk-scalelengths h and for the first time their disk cut-off radii R_{co}. We confirm for this sample the existence of such sharp truncations, and find a significantly lower mean value of the distance independent ratio R_{co}/h =2.9 +- 0.7 than the standard value of 4.5 often used in the literature. Our data show no correlation of these parameters with Hubble type, whereas we report a correlation between R_{co}/h and the distance based scalelength in linear units. Compared to the Milky Way we find only lower values of R_{co}/h, explained either by possible selection effects or by the completely different techniques used. We discuss our data in respect to present models for the origin of the cut-off radii, either as a relict of the galaxy formation process, or as an evolutionary phenomenon.
The relationship between the geometrical properties of stellar disks (a flatness and truncation radius) and the disk kinematics are considered for edge-on galaxies. It is shown that the observed thickness of the disks and the approximate constancy of their thickness along the radius well agrees with the condition of their marginal local gravitational stability. As a consequence, those galaxies whose disks are thinner should harbor more massive dark haloes. The correlation between the de-projeced central brightness of the disks and their flatness is found (the low surface brightness disks tend to be the thinniest ones). We also show that positions of observed photometrically determined truncation radii $R_{cut}$ for the stellar disks support the idea of marginal local gravitational stability of gaseous protodisks at $R =R_{cut}$, and hence the steepening of photometric profiles may be a result of too inefficient star formation beyond $R_{cut}$.
Observations suggest that the structural parameters of disk galaxies have not changed greatly since redshift 1. We examine whether these observations are consistent with a cosmology in which structures form hierarchically. We use SPH/N-body galaxy-scale simulations to simulate the formation and evolution of Milky-Way-like disk galaxies by fragmentation, followed by hierarchical merging. The simulated galaxies have a thick disk, that forms in a period of chaotic merging at high redshift, during which a large amount of alpha-elements are produced, and a thin disk, that forms later and has a higher metallicity. Our simulated disks settle down quickly and do not evolve much since redshift z~1, mostly because no major mergers take place between z=1 and z=0. During this period, the disk radius increases (inside-out growth) while its thickness remains constant. These results are consistent with observations of disk galaxies at low and high redshift.
We present a parameter study of the magnetohydrodynamical dynamo driven by cosmic rays in the interstellar medium (ISM) focusing on the efficiency of magnetic field amplification and the issue of energy equipartition between magnetic, kinetic and cosmic ray (CR) energies. We perform numerical CR-MHD simulations of the ISM using the extended version of ZEUS-3D code in the shearing box approximation and taking into account the presence of Ohmic resistivity, tidal forces and vertical disk gravity. CRs are supplied in randomly distributed supernova (SN) remnants and are described by the diffusion-advection equation, which incorporates an anisotropic diffusion tensor. The azimuthal magnetic flux and total magnetic energy are amplified depending on a particular choice of model parameters. We find that the most favorable conditions for magnetic field amplification correspond to magnetic diffusivity of the order of $3times 10^{25} cm^2s^{-1}$, SN rates close to those observed in the Milky Way, periodic SN activity corresponding to spiral arms, and highly anisotropic and field-aligned CR diffusion. The rate of magnetic field amplification is relatively insensitive to the magnitude of SN rates in a rage of spanning 10% up to 100% of realistic values. The timescale of magnetic field amplification in the most favorable conditions is 150 Myr, at galactocentric radius equal to 5 kpc. The final magnetic field energies fluctuate near equipartition with the gas kinetic energy. In all models CR energy exceeds the equipartition values by a least an order of magnitude, in contrary to the expected equipartition. We suggest that the excess of cosmic rays can be attributed to the fact that the shearing-box does not permit cosmic rays to leave the system along the horizontal magnetic field.
Many disk galaxies are lopsided: their brightest inner parts are displaced from the center of the outer isophotes, or the outer contours of the HI disk. This asymmetry is particularly common in small, low-luminosity galaxies. We argue here that long-lived lopsidedness is a consequence of the disk lying off-center in the potential of the galaxys extended dark halo, and spinning in a sense retrograde to its orbit about the halo center. The stellar velocity field predicted by our gravitational N-body simulations is clearly asymmetric.
Surface-brightness profiles for early-type (S0-Sb) disks exhibit three main classes (Type I, II, and III). Type II profiles are more common in barred galaxies, and most of the time appear to be related to the bars Outer Lindblad Resonance. Roughly half of barred galaxies in the field have Type II profiles, but almost none in the Virgo Cluster do; this might be related to ram-pressure stripping in clusters. A strong textit{anti}correlation is found between Type III profiles (antitruncations) and bars: Type III profiles are most common when there is no bar, and least common when there is a strong bar.