Do you want to publish a course? Click here

Pulsar Studies of Tiny-Scale Structure in the Neutral ISM

59   0   0.0 ( 0 )
 Added by Joel Weisberg
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We describe the use of pulsars to study small-scale neutral structure in the interstellar medium (ISM). Because pulsars are high velocity objects, the pulsar-Earth line of sight sweeps rapidly across the ISM. Multiepoch measurements of pulsar interstellar spectral line spectra therefore probe ISM structures on AU scales. We review pulsar measurements of small scale structure in HI and OH and compare these results with those obtained through other techniques.



rate research

Read More

116 - Joel N. Bregman 2003
Observations of extragalactic objects need to be corrected for Galactic absorption and this is often accomplished by using the measured 21 cm HI column. However, within the beam of the radio telescope there are variations in the HI column that can have important effects in interpreting absorption line studies and X-ray spectra at the softest energies. We examine the HI and DIRBE/IRAS data for lines of sight out of the Galaxy, which show evidence for HI variations in of up to a factor of three in 1 degree fields. Column density enhancements would preferentially absorb soft X-rays in spatially extended objects and we find evidence for this effect in the ROSAT PSPC observations of two bright clusters of galaxies, Abell 119 and Abell 2142. For clusters of galaxies, the failure to include column density fluctuations will lead to systematically incorrect fits to the X-ray data in the sense that there will appear to be a very soft X-ray excess. This may be one cause of the soft X-ray excess in clusters, since the magnitude of the effect is comparable to the observed values.
Optical depth variations in the Galactic neutral interstellar medium (ISM) with spatial scales from hundreds to thousands of astronomical units have been observed through HI absorption against pulsars and continuum sources, while extremely small structures with spatial scales of tens of astronomical units remain largely unexplored. The nature and formation of such tiny-scale atomic structures (TSAS) need to be better understood. We report a tentative detection of TSAS with a signal-to-noise ratio of 3.2 toward PSR B1557$-$50 in the second epoch of two Parkes sessions just 0.36 yr apart, which are the closest-spaced spectral observations toward this pulsar. One absorption component showing marginal variations has been identified. Based on the pulsars proper motion of 14 mas $rm yr^{-1}$ and the components kinematic distance of 3.3 kpc, the corresponding characteristic spatial scale is 17 au, which is among the smallest sizes of known TSAS. Assuming a similar line-of-sight (LOS) depth, the tentative TSAS cloud detected here is overdense and overpressured relative to the cold neutral medium (CNM), and can radiatively cool fast enough to be in thermal equilibrium with the ambient environment. We find that turbulence is not sufficient to confine the overpressured TSAS. We explore the LOS elongation that would be required for the tentative TSAS to be at the canonical CNM pressure, and find that it is $sim5000$ -- much larger than filaments observed in the ISM. We see some evidence of line width and temperature variations in the CNM components observed at the two epochs, as predicted by models of TSAS-like cloud formation colliding warm neutral medium flows.
142 - F. Patat , N.L.J. Cox , J. Parrent 2010
AIMS. In this work we explore the possibility of using the fast expansion of a Type Ia supernova photosphere to detect extra-galactic ISM column density variations on spatial scales of ~100 AU on time scales of a few months. METHODS. We constructed a simple model which describes the expansion of the photodisk and the effects of a patchy interstellar cloud on the observed equivalent width of Na I D lines. Using this model we derived the behavior of the equivalent width as a function of time, spatial scale and amplitude of the column density fluctuations. RESULTS. The calculations show that isolated, small (<100 AU) clouds with Na I column densities exceeding a few 10^11 cm^-2 would be easily detected. In contrast, the effects of a more realistic, patchy ISM become measurable in a fraction of cases, and for peak-to-peak variations larger than ~10^12 cm^-2 on a scale of 1000 AU. CONCLUSIONS. The proposed technique provides a unique way to probe the extra-galactic small scale structure, which is out of reach for any of the methods used so far. The same tool can also be applied to study the sub-AU Galactic ISM structure.
We compare the structure of molecular gas at $40$ pc resolution to the ability of gas to form stars across the disk of the spiral galaxy M51. We break the PAWS survey into $370$ pc and $1.1$ kpc resolution elements, and within each we estimate the molecular gas depletion time ($tau_{rm Dep}^{rm mol}$), the star formation efficiency per free fall time ($epsilon_{rm ff}$), and the mass-weighted cloud-scale (40 pc) properties of the molecular gas: surface density, $Sigma$, line width, $sigma$, and $bequivSigma/sigma^2proptoalpha_{rm vir}^{-1}$, a parameter that traces the boundedness of the gas. We show that the cloud-scale surface density appears to be a reasonable proxy for mean volume density. Applying this, we find a typical star formation efficiency per free-fall time, $epsilon_{ff} left( left< Sigma_{40pc} right> right) sim 0.3{-}0.36%$, lower than adopted in many models and found for local clouds. More, the efficiency per free fall time anti-correlates with both $Sigma$ and $sigma$, in some tension with turbulent star formation models. The best predictor of the rate of star formation per unit gas mass in our analysis is $b equiv Sigma / sigma^2$, tracing the strength of self gravity, with $tau_{rm Dep}^{rm mol} propto b^{-0.9}$. The sense of the correlation is that gas with stronger self-gravity (higher $b$) forms stars at a higher rate (low $tau_{rm Dep}^{rm mol}$). The different regions of the galaxy mostly overlap in $tau_{rm Dep}^{rm mol}$ as a function of $b$, so that low $b$ explains the surprisingly high $tau_{rm Dep}^{rm mol}$ found towards the inner spiral arms found by by Meidt et al. (2013).
Much of the interstellar medium in disk galaxies is in the form of neutral atomic hydrogen, H I. This gas can be in thermal equilibrium at relatively low temperatures, T < 300 K (the cold neutral medium, or CNM) or at temperatures somewhat less than 10^4 K (the warm neutral medium, or WNM). These two phases can coexist over a narrow range of pressures, P_min < P < P_max. We determine P_min and P_max in the plane of the Galaxy as a function of Galactocentric radius R using recent determinations of the gas heating rate and the gas phase abundances of interstellar gas. We provide an analytic approximation for P_min as a function of metallicity, far-ultraviolet radiation field, and the ionization rate of atomic hydrogen. Over most of the disk of the Galaxy, the H I must be in two phases: the weight of the H I in the gravitational potential of the Galaxy is large enough to generate thermal pressures exceeding P_min, so that turbulent pressure fluctuations can produce cold gas that is thermally stable; and the mean density of the H I is too low for the gas to be all CNM. Our models predict the presence of CNM gas to R = 16-18 kpc, somewhat farther than previous estimates. We also examine the potential impact of turbulent heating on our results and provide expressions for the heating rate as a function of Galactic radius.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا