Do you want to publish a course? Click here

Abundant crystalline silicates in the disk of a very low mass star

237   0   0.0 ( 0 )
 Added by Bruno Merin Martin
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We announce the discovery of SST-Lup3-1, a very low mass star close to the brown dwarf boundary in Lupus III with a circum(sub)stellar disk, discovered by the `Cores to Disks Spitzer Legacy Program from mid-, near-infrared and optical data, with very conspicuous crystalline silicate features in its spectrum. It is the first of such objects with a full 5 to 35 micron spectrum taken with the IRS and it shows strong 10 and 20 micron silicate features with high feature to continuum ratios and clear crystalline features out to 33 micron. The dust in the disk upper layer has a crystalline silicate grain fraction between 15% and 33%, depending on the assumed dust continuum. The availability of the full Spitzer infrared spectrum allows an analysis of the dust composition as a function of temperature and position in the disk. The hot (~ 300 K) dust responsible for the 10 micron feature consists of a roughly equal mix of small (~ 0.1 micron) and large (~ 1.5 micron) grains, whereas the cold (~ 70 K) dust responsible for the longer wavelength silicate features contains primarily large grains (> 1 micron). Since the cold dust emission arises from deeper layers in the inner (< 3 AU) disk as well as from the surface layers of the outer (3-5 AU) disk, this provides direct evidence for combined grain growth and settling in the disk. The inferred crystalline mass fractions in the two components are comparable. Since only the inner 0.02 AU of the disk is warm enough to anneal the amorphous silicate grains, even the lowest fraction of 15% of crystalline material requires either very efficient mixing or other formation mechanisms.



rate research

Read More

Observations of protoplanetary disks around very low-mass stars and brown dwarfs remain challenging and little is known about their properties. The disk around CIDA1 ($sim$0.1-0.2$M_odot$) is one of the very few known disks that host a large cavity (20au radius in size) around a very low-mass star. We present new ALMA observations at Band7 (0.9mm) and Band4 (2.1mm) of CIDA1 with a resolution of $sim 0.05times 0.034$. These new ALMA observations reveal a very bright and unresolved inner disk, a shallow spectral index of the dust emission ($sim2$), and a complex morphology of a ring located at 20au. We also present X-Shooter (VLT) observations that confirm the high accretion rate of CIDA1 of $dot{M}_{rm acc}$=1.4 $times~10^{-8}M_odot$/yr. This high value of $dot{M}_{rm acc}$, the observed inner disk, and the large cavity of 20au exclude models of photo-evaporation to explain the observed cavity. When comparing these observations with models that combine planet-disk interaction, dust evolution, and radiative transfer, we exclude planets more massive than 0.5$M_{rm{Jup}}$ as the potential origin of the large cavity because with these it is difficult to maintain a long-lived and bright inner disk. Even in this planet mass regime, an additional physical process may be needed to stop the particles from migrating inwards and to maintain a bright inner disk on timescales of millions of years. Such mechanisms include a trap formed by a very close-in extra planet or the inner edge of a dead zone. The low spectral index of the disk around CIDA1 is difficult to explain and challenges our current dust evolution models, in particular processes like fragmentation, growth, and diffusion of particles inside pressure bumps.
We have carried out mid-infrared N-band spectroscopic observations of the T Tauri star Hen 3-600A in the TW Hydra association with the COMICS on the 8.2m Subaru Telescope and found structured features in its spectrum. These structured features are well explained by a combination of crystalline forsterite, crystalline enstatite, silica and glassy olivine grains. Among intermediate-mass young stellar objects (YSOs), crystalline silicates have already been detected, but no firm detection has been reported so far for low-mass YSOs such as T Tauri stars. This is the first clear detection of crystalline silicates in low-mass YSOs and shows that the crystallization event occurs even in the protoplanetary disk of low-mass YSOs in the T Tauri phase. The physical processes leading to the inferred dust composition in the Hen3-600A system may be analogous to those occured in the early epoch of the Solar system.
We present a model using the evolution of the stellar population in a starburst galaxy to predict the crystallinity of the silicates in the interstellar medium of this galaxy. We take into account dust production in stellar ejecta, and amorphisation and destruction in the interstellar medium and find that a detectable amount of crystalline silicates may be formed, particularly at high star formation rates, and in case supernovae are efficient dust producers. We discuss the effect of dust destruction and amorphisation by supernovae, and the effect of a low dust-production efficiency by supernovae, and find that when taking this into account, crystallinity in the interstellar medium becomes hard to detect. Levels of 6.5-13% crystallinity in the interstellar medium of starburst galaxies have been observed and thus we conclude that not all these crystalline silicates can be of stellar origin, and an additional source of crystalline silicates associated with the Active Galactic Nucleus must be present.
We present the Spitzer Space Telescope Infrared Spectrograph spectrum of the Orion A protostar HOPS-68. The mid-infrared spectrum reveals crystalline substructure at 11.1, 16.1, 18.8, 23.6, 27.9, and 33.6 microns superimposed on the broad 9.7 and 18 micron amorphous silicate features; the substructure is well matched by the presence of the olivine end-member forsterite. Crystalline silicates are often observed as infrared emission features around the circumstellar disks of Herbig Ae/Be stars and T Tauri stars. However, this is the first unambiguous detection of crystalline silicate absorption in a cold, infalling, protostellar envelope. We estimate the crystalline mass fraction along the line-of-sight by first assuming that the crystalline silicates are located in a cold absorbing screen and secondly by utilizing radiative transfer models. The resulting crystalline mass fractions of 0.14 and 0.17, respectively, are significantly greater than the upper limit found in the interstellar medium (< 0.02-0.05). We propose that the amorphous silicates were annealed within the hot inner disk and/or envelope regions and subsequently transported outward into the envelope by entrainment in a protostellar outflow
Silicates are an important component of interstellar dust and the structure of these grains -- amorphous versus crystalline -- is sensitive to the local physical conditions. We have studied the infrared spectra of a sample of ultra-luminous infrared galaxies. Here, we report the discovery of weak, narrow absorption features at 11, 16, 19, 23, and 28 microns, characteristic of crystalline silicates, superimposed on the broad absorption bands at 10 and 18 microns due to amorphous silicates in a subset of this sample. These features betray the presence of forsterite (Mg_2SiO_4), the magnesium-rich end member of the olivines. Previously, crystalline silicates have only been observed in circumstellar environments. The derived fraction of forsterite to amorphous silicates is typically 0.1 in these ULIRGs. This is much larger than the upper limit for this ratio in the interstellar medium of the Milky Way, 0.01. These results suggest that the timescale for injection of crystalline silicates into the ISM is short in a merger-driven starburst environment (e.g., as compared to the total time to dissipate the gas), pointing towards massive stars as a prominent source of crystalline silicates. Furthermore, amorphization due to cosmic rays, which is thought to be of prime importance for the local ISM, lags in vigorous starburst environments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا