Do you want to publish a course? Click here

The jet-powered optical nebula of Cygnus X-1

91   0   0.0 ( 0 )
 Added by David Russell
 Publication date 2007
  fields Physics
and research's language is English
 Authors D. M. Russell




Ask ChatGPT about the research

We present H-alpha and [O III] (5007 Angstroms) images of the nebula powered by the jet of the black hole candidate and microquasar Cygnus X-1, observed with the 2.5m Isaac Newton Telescope (INT). The ring-like structure is luminous in [O III] and there exists a thin outer shell with a high [O III] / H-alpha flux ratio. This outer shell probably originates in the collisionally excited atoms close to the front of the bow shock. Its presence indicates that the gas is shock excited as opposed to photoionised, supporting the jet-powered scenario. The shock velocity was previously constrained at 20 < v < 360 km/s; here we show that v >= 100 km/s (1 sigma confidence) based on a comparison of the observed [O III] / H-alpha ratio in the bow shock with a number of radiative shock models. From this we further constrain the time-averaged power of the jet: P_Jet = (4 - 14)*10^36 erg/s. The H-alpha flux behind the shock front is typically 4*10^-15 erg/s/cm^2/arcsec^2, and we estimate an upper limit of ~8*10^-15 erg/s/cm^2/arcsec^2 (3 sigma) to the optical (R-band) continuum flux of the nebula. The inferred age of the structure is similar to the time Cyg X-1 has been close to a bright H II region (due to the proper motion of the binary), indicating a dense local medium is required to form the shock wave. In addition, we search a > 1 square degree field of view to the south of Cyg X-1 in H-alpha (provided by the INT Photometric H-alpha Survey of the Northern Galactic Plane; IPHAS) for evidence of the counter jet interacting with the surrounding medium. Two candidate regions are identified, whose possible association with the jet could be confirmed with follow-up observations in [S II] and deeper observations in [O III] and radio.



rate research

Read More

We present multi-epoch observations of the radio nebula around the neutron star X-ray binary Circinus X-1 made at 1.4 and 2.5 GHz with the Australia Telescope Compact Array between October 2000 and September 2004. The nebula can be seen as a result of the interaction between the jet from the system and the interstellar medium and it is likely that we are actually looking toward the central X-ray binary system through the jet-powered radio lobe. The study of the nebula thus offers a unique opportunity to estimate for the first time using calorimetry the energetics of a jet from an object clearly identified as a neutron star. An extensive discussion on the energetics of the complex is presented: a first approach is based on the minimum energy estimation, while a second one employs a self-similar model of the interaction between the jets and the surrounding medium. The results suggest an age for the nebula of leq 10^5 years and a corresponding time-averaged jet power geq 10^{35} erg s^{-1}. During periodic flaring episodes, the instantaneous jet power may reach values of similar magnitude to the X-ray luminosity.
Results are presented from recent VLBI observations of Cygnus X-1 during X-ray spectral state changes. Using the EVN in e-VLBI mode and the VLBA with disk recording, we observed the X-ray binary at very high angular resolution and studied changes in the compact jets as the source made transitions from hard X-ray states to softer states. The radio light curves show that these transitions were accompanied by radio flaring events followed by a quenching of the radio emission, as expected from the current paradigm for disc-jet coupling in X-ray binaries. While we see structural changes in the compact jets during these transitions, there was no evidence for the expected ejection of bright, relativistically-moving jet knots. However, we find strong evidence that the jet does not switch off completely in the soft X-ray state of Cygnus X-1, such that a weak, compact jet persists during this phase of radio quenching.
102 - David M. Russell 2006
Accreting black holes and neutron stars release an unknown fraction of the infalling particles and energy in the form of collimated jets. The jets themselves are radiatively inefficient, but their power can be constrained by observing their interaction with the surrounding environment. Here we present observations of X-ray binary jet-ISM interactions which produce optical line emission, using the ESO/MPI 2.2m and Isaac Newton Telescopes. We constrain the time-averaged power of the Cyg X-1 jet-powered nebula, and present a number of new candidate nebulae discovered. Comparisons are made to the large scale lobes of extragalactic AGN. We also speculate that some emission line emitters close to X-ray binaries in M31 are likely to be microquasar jet-powered nebulae.
109 - R.P. Fender 2006
We report the first observation of a transient relativistic jet from the canonical black hole candidate, Cygnus X-1, obtained with the Multi-Element Radio-Linked Interferometer Network (MERLIN). The jet was observed in only one of six epochs of MERLIN imaging of the source during a phase of repeated X-ray spectral transitions in 2004 Jan--Feb, and this epoch corresponded to the softest 1.5-12 keV X-ray spectrum. With only a single epoch revealing the jet, we cannot formally constrain its velocity. Nevertheless, several lines of reasoning suggest that the jet was probably launched 0.5-4.0 days before this brightening, corresponding to projected velocities of 0.2c < v_app < 1.6c, and an intrinsic velocity of > 0.3c. We also report the occurrence of a major radio flare from Cyg X-1, reaching a flux density of ~120 mJy at 15 GHz, and yet not associated with any resolvable radio emission, despite a concerted effort with MERLIN. We discuss the resolved jet in terms of the recently proposed unified model for the disc-jet coupling in black hole X-ray binaries, and tentatively identify the jet line for Cyg X-1. The source is consistent with the model in the sense that a steady jet appears to persist initially when the X-ray spectrum starts softening, and that once the spectral softening is complete the core radio emission is suppressed and transient ejecta / shock observed. However, there are some anomalies, and Cyg X-1 clearly does not behave like a normal black hole transient in progressing to the canonical soft / thermal state once the ejection event has happened.
We report a polarimetric constraint on the hard X-ray synchrotron jet emission from the Cygnus X-1 black-hole binary system. The observational data were obtained using the PoGO+ hard X-ray polarimeter in July 2016, when Cygnus X-1 was in the hard state. We have previously reported that emission from an extended corona with a low polarization fraction is dominating, and that the polarization angle is perpendicular to the disk surface. In the soft gamma-ray regime, a highly-polarized synchrotron jet is reported with INTEGRAL observations. To constrain the polarization fraction and flux of such a jet component in the hard X-ray regime, we now extend analyses through vector calculations in the Stokes QU plane, where the dominant corona emission and the jet component are considered simultaneously. The presence of another emission component with different polarization angle could partly cancel out the net polarization. The 90% upper limit of the polarization fraction for the additional synchrotron jet component is estimated as <10%, <5%, and <5% for polarization angle perpendicular to the disk surface, parallel to the surface, and aligned with the emission reported by INTEGRAL data, respectively. From the 20-180 keV total flux of 2.6 x 10^-8 erg s^-1 cm^-2, the upper limit of the polarized flux is estimated as <3 x 10^-9 erg s^-1 cm^-2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا