Do you want to publish a course? Click here

The X-ray activity-rotation relation of T Tauri stars in Taurus-Auriga

100   0   0.0 ( 0 )
 Added by Kevin Briggs
 Publication date 2007
  fields Physics
and research's language is English
 Authors K. R. Briggs




Ask ChatGPT about the research

The Taurus-Auriga star-forming complex hosts the only population of T Tauri stars in which an anticorrelation of X-ray activity and rotation period has been observed. We have used XMM-Newtons European Photon Imaging Cameras to perform the most sensitive survey to date of X-ray emission (0.3-10 keV) from young stars in Taurus-Auriga and investigate the dependences of X-ray activity measures -- X-ray luminosity, Lx, its ratio with the stellar luminosity, Lx/Lstar, and the surface-averaged X-ray flux, Fxs -- on rotation period. We tested for differences in the distributions of Lx/Lstar of fast and slow rotators, accretors and non-accretors, and compared the dependence of Lx/Lstar on the ratio of the rotation period and the convective turnover timescale, the Rossby number, with that of late-type main-sequence stars. We found significant anticorrelations of Lx and Fxs with rotation period, but these could be explained by the typically higher stellar luminosity and effective temperature of fast-rotators in Taurus-Auriga and a near-linear dependence of Lx on Lstar. We found no evidence for a dependence of Lx/Lstar on rotation period, but for accretors to have lower Lx/Lstar than non-accretors at all rotation periods. The Rossby numbers of accretors and non-accretors were found to be the same as those of late-type main-sequence stars showing saturated X-ray emission. We conclude that non-accreting T Tauri stars show X-ray activity entirely consistent with the saturated activity of late-type main-sequence stars. Accreting T Tauri stars show lower X-ray activity, which cannot be attributed to their slower rotation.



rate research

Read More

Aims: We search new T Tauri star (TTS) candidates with the mid-infrared (MIR) part of the AKARI All-Sky Survey at 9 and 18 um wavelengths. Methods: We used the point source catalogue (PSC), obtained by the Infrared Camera (IRC) on board AKARI. We combined the 2MASS PSC and the 3rd version of the USNO CCD Astrograph Catalogue (UCAC) with the AKARI IRC-PSC, and surveyed 517 known TTSs over a 1800-square-degree part of the Taurus-Auriga region to find criteria to extract TTSs. We considered asymptotic giant branch (AGB) stars, post-AGB stars, Planetary Nebulae (PNe), and galaxies, which have similar MIR colours, to separate TTSs from these sources. Results: Of the 517 known TTSs, we detected 133 sources with AKARI. Based on the colour-colour and colour-magnitude diagrams made from the AKARI, 2MASS, and UCAC surveys, we propose the criteria to extract TTS candidates from the AKARI All-Sky data. On the basis of our criteria, we selected 176/14725 AKARI sources as TTS candidates which are located around the Taurus-Auriga region. Comparing these sources with SIMBAD, there are 148 previously identified sources including 115 Young Stellar Objects (YSOs), and 28 unidentified sources. Conclusions: Based on SIMBAD identifications, we take the TTS-identification probability using our criteria to be ~75 %. We find 28 TTS candidates, of which we expect 21 to be confirmed once follow-up observations can be obtained. Although the probability of ~75 % is not so high, it is affected by the completeness of the SIMBAD database, and we can search for TTSs over the whole sky, over all star forming regions.
Depending on whether a T Tauri star accretes material from its circumstellar disk or not, different X-ray emission properties can be found. The accretion shocks produce cool heating of the plasma, contributing to the soft X-ray emission from the star. Using X-ray data from the Chandra Orion Ultra-deep Project and accretion rates that were obtained with the Hubble Space Telescope/WFPC2 photometric measurements in the Orion Nebula Cluster, we studied the relation between the accretion processes and the X-ray emissions of a coherent sample of T Tauri sources in the region. We performed regression and correlation analyses of our sample of T Tauri stars between the X-ray parameters, stellar properties, and the accretion measurements. We find that a clear anti-correlation is present between the residual X-ray luminosity and the accretion rates in our samples in Orion that is consistent with that found on the XMM-Newton Extended Survey of the Taurus molecular cloud (XEST) study. We provide a catalog with X-ray luminosities (corrected from distance) and accretion measurements of an Orion Nebula Cluster (ONC) T Tauri stars sample. Although Orion and Taurus display strong differences in their properties (total gas and dust mass, star density, strong irradiation from massive stars), we find that a similar relation between the residual X-ray emission and accretion rate is present in the Taurus molecular cloud and in the accreting samples from the Orion Nebula Cluster. The spread in the data suggests dependencies of the accretion rates and the X-ray luminosities other than the stellar mass, but the similarity between Orion and Taurus hints at the environment not being one of them. The anti-correlation between the residual X-ray luminosity and mass accretion rate is inherent to the T Tauri stars in general, independent of their birthplace and environment, and intrinsic to early stellar evolution.
73 - Rainer Koehler 2001
We report on a multiplicity survey of a sample of X-ray selected young stars in the Chamaeleon association. We used speckle-interferometry and direct imaging to find companions in the separation range 0.13 to 6. After correction for chance alignment with background stars, we find a multiplicity (number of binaries or multiples divided by number of systems) of (14.0+-4.3)% and a companion star frequency (number of companions divided by number of systems) of (14.7+-5.1)%. Compared to solar-type main-sequence stars, the companion star frequency is lower by a factor of 0.61+-0.27. This is remarkably different from the high multiplicity found in the Taurus-Auriga star-forming region and for T Tauri stars in Chamaeleon known before ROSAT. We find only a few binaries with projected separations of more than 70 AU, also in contrast to the results for stars known before ROSAT. This indicates that the X-ray selected stars belong to a different population than the stars known before ROSAT, a hypothesis further supported by their Hipparcos distances and proper motions.
224 - G. Aresu , I. Kamp , R. Meijerink 2010
Context: T Tauri stars have X-ray luminosities ranging from L_X = 10^28-10^32 erg/s. These luminosities are similar to UV luminosities (L_UV 10^30-10^31 erg/s) and therefore X-rays are expected to affect the physics and chemistry of the upper layers of their surrounding protoplanetary disks. Aim: The effects and importance of X-rays on the chemical and hydrostatic structure of protoplanetary disks are investigated, species tracing X-ray irradiation (for L_X >= 10^29 erg/s) are identified and predictions for [OI], [CII] and [NII] fine structure line fluxes are provided. Methods: We have implemented X-ray physics and chemistry into the chemo-physical disk code ProDiMo. We include Coulomb heating and H2 ionization as heating processes and primary and secondary ionization due to X-rays in the chemistry. Results: X-rays heat up the gas causing it to expand in the optically thin surface layers. Neutral molecular species are not much affected in their abundance and spatial distribution, but charged species such as N+, OH+, H2O+ and H3O+ show enhanced abundances in the disk surface. Conclusions: Coulomb heating by X-rays changes the vertical structure of the disk, yielding temperatures of ~ 8000 K out to distances of 50 AU. The chemical structure is altered by the high electron abundance in the gas in the disk surface, causing an efficient ion-molecule chemistry. The products of this, OH+, H2O+ and H3O+, are of great interest for observations of low-mass young stellar objects with the Herschel Space Observatory. [OI] (at 63 and 145 mic) and [CII] (at 158 mic) fine structure emission are only affected for L_X > 10^30 erg/s.
We have started a high resolution optical observation program dedicated to the study of chromospheric activity in weak-lined T Tauri stars (WTTS) recently discovered by the ROSAT All-Sky Survey (RASS). It is our purpose to quantify the phenomenology of the chromospheric activity of each star determining stellar surface fluxes in the more important chromospheric activity indicators (Ca II H & K, H_beta, H_alpha, Ca II IRT) as well as obtain the Li I abundance, a better determination of the stellar parameters, spectral type, and possible binarity. A large number of WTTS have been discovered by the RASS in and around differen star formation clouds.Whether these stars are really WTTS, or post-TTS, or even young main sequence stars is a matter of ongoing debate. However, we have centered our study only on objects for which very recent studies, of Li I abundance (greater than Pleiads of the same spectral type) or radio properties, clearly confirmed their pre-main sequence (PMS) nature. In this contribution we present preliminary results of our January 1998 high resolution echelle spectroscopic observations at the 2.1m telescope of the McDonald Observatory. We have analysed, using the spectral subtraction technique, the H_alpha and Ca II IRT lines of six WTTS (RXJ0312.8-0414NW, SE; RXJ0333.1+1036; RXJ0348.5+0832; RXJ0512.0+1020; RXJ0444.9+2717) located in and around the Taurus-Auriga molecular clouds. A broad and variable double-picked H_alpha emission is observed in RXJ0444.9+2717. Emission above the continuum in H_alpha and Ca II IRT lines is detected in RXJ0333.1+1036 and a filling-in of these lines is present in the rest of the stars. Our spectral type and Li I EW deterninations confirm the PMS nature of these objects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا