We apply in this paper the statefinder parameters to the interacting phantom energy with dark matter. There are two kinds of scaling solutions in this model. It is found that the evolving trajectories of these two scaling solutions in the statefinder parameter plane are quite different, and that are also different from the statefinder diagnostic of other dark energy models.
Statefinder diagnostic is a useful method which can differ one dark energy model from the others. The Statefinder pair ${r, s}$ is algebraically related to the equation of state of dark energy and its first time derivative. We apply in this paper this method to the dilaton dark energy model based on Weyl-Scaled induced gravitational theory. We investigate the effect of the coupling between matter and dilaton when the potential of dilaton field is taken as the Mexican hat form. We find that the evolving trajectory of our model in the $r-s$ diagram is quite different from those of other dark energy models.
Up-to-date cosmological data analyses have shown that textit{(a)} a closed universe is preferred by the Planck data at more than $99%$ CL, and textit{(b)} interacting scenarios offer a very compelling solution to the Hubble constant tension. In light of these two recent appealing scenarios, we consider here an interacting dark matter-dark energy model with a non-zero spatial curvature component and a freely varying dark energy equation of state in both the quintessential and phantom regimes. When considering Cosmic Microwave Background data only, a phantom and closed universe can perfectly alleviate the Hubble tension, without the necessity of a coupling among the dark sectors. Accounting for other possible cosmological observations compromises the viability of this very attractive scenario as a global solution to current cosmological tensions, either by spoiling its effectiveness concerning the $H_0$ problem, as in the case of Supernovae Ia data, or by introducing a strong disagreement in the preferred value of the spatial curvature, as in the case of Baryon Acoustic Oscillations.
We investigate the interacting dark energy models by using the diagnostics of statefinder hierarchy and growth rate of structure. We wish to explore the deviations from $Lambda$CDM and to differentiate possible degeneracies in the interacting dark energy models with the geometrical and structure growth diagnostics. We consider two interacting forms for the models, i.e., $Q_1=beta Hrho_c$ and $Q_2=beta Hrho_{de}$, with $beta$ being the dimensionless coupling parameter. Our focus is the I$Lambda$CDM model that is a one-parameter extension to $Lambda$CDM by considering a direct coupling between the vacuum energy ($Lambda$) and cold dark matter (CDM), with the only additional parameter $beta$. But we begin with a more general case by considering the I$w$CDM model in which dark energy has a constant $w$ (equation-of-state parameter). For calculating the growth rate of structure, we employ the parametrized post-Friedmann theoretical framework for interacting dark energy to numerically obtain the $epsilon(z)$ values for the models. We show that in both geometrical and structural diagnostics the impact of $w$ is much stronger than that of $beta$ in the I$w$CDM model. We thus wish to have a closer look at the I$Lambda$CDM model by combining the geometrical and structural diagnostics. We find that the evolutionary trajectories in the $S^{(1)}_3$--$epsilon$ plane exhibit distinctive features and the departures from $Lambda$CDM could be well evaluated, theoretically, indicating that the composite null diagnostic ${S^{(1)}_3, epsilon}$ is a promising tool for investigating the interacting dark energy models.
We investigate cosmological implications of an energy density contribution arising by elastic dark matter self-interactions. Its scaling behaviour shows that it can be the dominant energy contribution in the early universe. Constraints from primordial nucleosynthesis give an upper limit on the self-interaction strength which allows for the same strength as standard model strong interactions. Furthermore we explore the cosmological consequences of an early self-interaction dominated universe. Chemical dark matter decoupling requires that self-interacting dark matter particles are rather light (keV range) but we find that super-weak inelastic interactions are predicted by strong elastic dark matter self-interactions. Assuming a second, collisionless cold dark matter component, its natural decoupling scale exceeds the weak scale and is in accord with the electron and positron excess observed by PAMELA and Fermi-LAT. Structure formation analysis reveals a linear growing solution during self-interaction domination, enhancing structures up to ~ 10^(-3) solar masses long before the formation of the first stars.
Using a new method--statefinder diagnostic which can differ one dark energy model from the others, we investigate in this letter the dynamics of Born-Infeld(B-I) type dark energy model. The evolutive trajectory of B-I type dark energy with Mexican hat potential model with respect to $e-folding$ time $N$ is shown in the $r(s)$ diagram. When the parameter of noncanonical kinetic energy term $etato0$ or kinetic energy $dot{phi}^2to0$, B-I type dark energy(K-essence) model reduces to Quintessence model or $Lambda$CDM model corresponding to the statefinder pair ${r, s}$=${1, 0}$ respectively. As a result, the the evolutive trajectory of our model in the $r(s)$ diagram in Mexican hat potential is quite different from those of other dark energy models.