Do you want to publish a course? Click here

An XMM-Newton view of the X-ray flat radio-quiet quasar PG 1416-129

70   0   0.0 ( 0 )
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

(abridged) The radio-quiet quasar PG1416-129 (z=0.129) exhibits atypical optical and X-ray properties. Between 1990 and 2000, in response to its optical continuum decrease, the ``classical broad component of Hbeta almost completely disappeared, with a factor of 10 decrease in the line flux. In the X-ray band, this object was observed by Ginga in 1988 to have the hardest quasar photon index, with Gamma=1.1+/-0.1. We present an XMM/EPIC observation of PG1416-129 performed in July 2004. We analyze the time-averaged pn spectrum of this quasar, as well as perform time-resolved spectroscopy. We find that during the present XMM observation, PG1416-129 still has a rather hard photon index, both in the soft and hard energy ranges, compared to radio-quiet quasars but compatible with the photon index value found for radio-loud quasars. This object also shows long-term luminosity variability over 16 years by a factor of three with a variation of photon index from ~1.2 to ~1.8. In the soft energy band (0.2-2keV), we found a very weak soft X-ray excess compared to other RQ quasars. The whole time averaged spectrum is fit very well either by X-ray ionized reflection from the accretion disk surface, by a warm absorber-emitter plus power-law, or by a smeared absorption/emission from a relativistic outflow. While no constant narrow FeK line at 6.4keV is observed, we find the possible presence of two non-simultaneous transient iron lines: a redshifted narrow iron line at about 5.5keV (96.4% confidence level according to multi-trial Monte-Carlo simulations) at the beginning of this observation and the appearance of a line at 6.3-6.4keV (99.1% c.l.) at the end of the observation. These variable lines could be generated by discrete hot-spots on the accretion disk surface.



rate research

Read More

221 - L. Ballo 2008
This paper was withdrawn due to a misidentification of the source.
147 - Allison Bostrom 2014
We present the first high signal-to-noise XMM-Newton observations of the broad-line radio galaxy 3C 411. After fitting various spectral models, an absorbed double power-law continuum and a blurred relativistic disk reflection model (kdblur) are found to be equally plausible descriptions of the data. While the softer power-law component ($Gamma$=2.11) of the double power-law model is entirely consistent with that found in Seyfert galaxies (and hence likely originates from a disk corona), the additional power law component is very hard ($Gamma$=1.05); amongst the AGN zoo, only flat-spectrum radio quasars have such hard spectra. Together with the very flat radio-spectrum displayed by this source, we suggest that it should instead be classified as a FSRQ. This leads to potential discrepancies regarding the jet inclination angle, with the radio morphology suggesting a large jet inclination but the FSRQ classification suggesting small inclinations. The kdblur model predicts an inner disk radius of at most 20 r$_g$ and relativistic reflection.
120 - L. P. Jenkins 2003
We present the first results of an XMM-Newton EPIC observation of the luminous X-ray source population in the supergiant spiral galaxy M101. We have studied the properties of the fourteen most luminous sources, all of which have intrinsic X-ray luminosities exceeding the Eddington limit for a 1.4 solar mass neutron star, with a subset in the ultraluminous X-ray source (ULX) regime. Eleven sources show evidence of short-term variability, and most vary by a factor of ~2-4 over a baseline of 11-24 yrs, providing strong evidence that these sources are accreting X-ray binary (XRB) systems. The sources show a variety of spectral shapes, with no apparent spectral distinction between those above and below the ULX threshold. Nine are well-fit with either simple absorbed disc blackbody/powerlaw models. However for three of the four sources best-fit with powerlaw models, we cannot exclude the disc blackbody fits and therefore conclude that, coupled with their high luminosities, eight out of nine single-component sources are possibly high state XRBs. The nuclear source has the only unambiguous powerlaw spectrum (photon index~2.3), which may be evidence for a low-luminosity AGN. The remaining five sources require at least two-component spectral fits. We have compared the spectral shapes of nine sources covered by both this observation and an archival 100ks Chandra observation of M101; the majority show behaviour typical of Galactic XRBs i.e. softening with increasing luminosity. We find no definitive spectral signatures to indicate that these sources contain neutron star primaries, and conclude that they are likely to be stellar-mass black hole XRBs, with black hole masses of ~2-23 solar masses if accreting at the Eddington limit (abridged).
73 - L. P. Jenkins 2004
We present the global X-ray properties of the point source population in the grand-design spiral galaxy M101, as seen with XMM-Newton. 108 X-ray sources are detected within the D25 ellipse of M101, of which ~24 are estimated to be background sources. Multiwavelength cross-correlations show that 20 sources are coincident with HII regions and/or supernova remnants (SNRs), 7 have identified/candidate background galaxy counterparts, 6 are coincident with foreground stars and one has a radio counterpart. We apply an X-ray colour classification scheme to split the source population into different types. Approximately 60 per cent of the population can be classified as X-ray binaries (XRBs), although there is source contamination from background AGN in this category as they have similar spectral shapes in the X-ray regime. Fifteen sources have X-ray colours consistent with supernova remnants (SNRs), three of which correlate with known SNR/HII radio sources. We also detect 14 candidate supersoft sources, with significant detections in the softest X-ray band (0.3-1 keV) only. Sixteen sources display short-term variability during the XMM-Newton observation, twelve of which fall into the XRB category, giving additional evidence of their accreting nature. Using archival Chandra & ROSAT HRI data, we find that ~40 per cent of the XMM sources show long-term variability over a baseline of up to ~10 years, and eight sources display potential transient behaviour between observations. Sources with significant flux variations between the XMM and Chandra observations show a mixture of softening and hardening with increasing luminosity. The spectral and timing properties of the sources coincident with M101 confirm that its X-ray source population is dominated by accreting XRBs (abridged).
80 - K.L. Page 2004
XMM Newton observations of five high-luminosity radio-quiet QSOs (Q 0144-3938, UM 269, PG 1634+706, SBS 0909+532 and PG 1247+267) are presented. Spectral energy distributions were calculated from the XMM-Newton EPIC (European Photon Imaging Camera) and OM (Optical Monitor) data, with bolometric luminosities estimated in the range from 7 x 10^45 to 2 x 10^48 erg s^-1 for the sample, peaking in the UV. At least four of the QSOs show a similar soft excess, which can be well modelled by either one or two blackbody components, in addition to the hard X-ray power-law. The temperatures of these blackbodies (~100-500 eV) are too high to be direct thermal emission from the accretion disc, so Comptonization is suggested. Two populations of Comptonizing electrons, with different temperatures, are needed to model the broad-band spectrum. The hotter of these produces what is seen as the hard X-ray power-law, while the cooler (~0.25-0.5 keV) population models the spectral curvature at low energies. Only one of the QSOs shows evidence for an absorption component, while three of the five show neutral iron emission. Of these, PG 1247+267 seems to have a broad line (EW ~ 250 eV), with a strong, associated reflection component (R ~ 2), measured out to 30 keV in the rest frame of the QSO. Finally, it is concluded that the X-ray continuum shape of AGN remains essentially constant over a wide range of black hole mass and luminosity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا