Do you want to publish a course? Click here

Stellar Populations in the Outer Halo of the Massive Elliptical M49

332   0   0.0 ( 0 )
 Added by Chris Mihos
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use deep surface photometry of the giant elliptical M49 (NGC 4472), obtained as part of our survey for diffuse light in the Virgo Cluster, to study the stellar populations in its outer halo. Our data trace M49s stellar halo out to ~ 100 kpc (7 Re), where we find that the shallow color gradient seen in the inner regions becomes dramatically steeper. The outer regions of the galaxy are quite blue (B-V ~ 0.7); if this is purely a metallicity effect, it argues for extremely metal poor stellar populations with [Fe/H] < -1. We also find that the extended accretion shells around M49 are distinctly redder than the galaxys surrounding halo, suggesting that we are likely witnessing the buildup of both the stellar mass and metallicity in M49s outer halo due to late time accretion. While such growth of galaxy halos is predicted by models of hierarchical accretion, this growth is thought to be driven by more massive accretion events which have correspondingly higher mean metallicity than inferred for M49s halo. Thus the extremely metal-poor nature of M49s extended halo provides some tension against current models for elliptical galaxy formation.



rate research

Read More

219 - D. Crnojevic 2013
We present the first deep survey of resolved stellar populations in the remote outer halo of our nearest giant elliptical (gE), Centaurus A (D=3.8 Mpc). Using the VIMOS/VLT optical camera, we obtained deep photometry for four fields along the major and minor axes at projected elliptical radii of ~30-85 kpc (corresponding to ~5-14 R_{eff}). We use resolved star counts to map the spatial and colour distribution of red giant branch (RGB) stars down to ~2 magnitudes below the RGB tip. We detect an extended halo out to the furthermost elliptical radius probed (~85 kpc or ~14 R_{eff}), demonstrating the vast extent of this system. We detect a localised substructure in these parts, visible in both (old) RGB and (intermediate-age) luminous asymptotic giant branch stars, and there is some evidence that the outer halo becomes more elliptical and has a shallower surface brightness profile. We derive photometric metallicity distribution functions for halo RGB stars and find relatively high median metallicity values ([Fe/H]_{med} -0.9 to -1.0 dex) that change very little with radius over the extent of our survey. Radial metallicity gradients are measured to be ~-0.002 to -0.004 dex/kpc and the fraction of metal-poor stars (defined as [Fe/H]<-1.0) is ~40-50% at all radii. We discuss these findings in the context of galaxy formation models for the buildup of gE haloes.
We use deep Hubble Space Telescope imaging in the outskirts of the nearby spiral M101 to study stellar populations in the galaxys outer disk and halo. Our ACS field lies 17.6 arcmin (36 kpc) from the center of M101 and targets the blue NE Plume of M101s outer disk, while the parallel WFC3 field lies at a distance of 23.3 arcmin (47 kpc) to sample the galaxys stellar halo. The WFC3 halo field shows a well-defined red giant branch characterized by low metallicity ([M/H]=-1.7 $pm$ 0.2), with no evidence of young stellar populations. In contrast, the ACS disk field shows multiple stellar populations, including a young main sequence, blue and red helium burning stars, and old RGB and AGB populations. The mean metallicity of these disk stars is quite low: [M/H]=-1.3 $pm$ 0.2 for the RGB population, and -1.15 $pm$ 0.2 for the younger helium burning sequences. Of particular interest is a bunching of stars along the BHeB sequence, indicative of an evolving cohort of massive young stars. We show that the young stellar populations in this field are well-described by a decaying burst of star formation that peaked ~ 300-400 Myr ago, along with a more extended star formation history to produce the older RGB and AGB populations. These results confirm and extend the results from our previous deep surface photometry of M101s outer disk, providing an important cross-check on stellar population studies using resolved stellar populations versus integrated light photometry. We discuss our results in the context of halo formation models and the interaction history of M101 and its companions.
215 - Giuseppe Murante 2010
We provide a set of numerical N-body simulations for studying the formation of the outer Milky Wayss stellar halo through accretion events. After simulating minor mergers of prograde and retrograde orbiting satellite halo with a Dark Matter main halo, we analyze the signal left by satellite stars in the rotation velocity distribution. The aim is to explore the orbital conditions where a retrograde signal in the outer part of the halo can be obtained, in order to give a possible explanation of the observed rotational properties of the Milky Way stellar halo. Our results show that, for satellites more massive than $sim 1/40$ of the main halo, the dynamical friction has a fundamental role in assembling the final velocity distributions resulting from different orbits and that retrograde satellites moving on low inclination orbits deposit more stars in the outer halo regions end therefore can produce the counter-rotating behavior observed in the outer Milky Way halo.
We investigate recent star formation in the extended ultraviolet (XUV) disks of five nearby galaxies (NGC 0628, NGC 2090, NGC 2841, NGC 3621, and NGC 5055) using a long wavelength baseline comprised of ultraviolet and mid-infrared imaging from the Galaxy Evolution Explorer and the Spitzer Infrared Array Camera. We identify 229 unresolved stellar complexes across targeted portions of their XUV disks and utilize spectral energy distribution fitting to measure their stellar ages and masses through comparison with Starburst99 population synthesis models of instantaneous burst populations. We find that the median age of outer disk associations in our sample is ~100 Myr with a large dispersion that spans the entire range of our models (1 Myr-1 Gyr). This relatively evolved state for most associations addresses the observed dearth of Halpha emission in some outer disks, as Halpha can only be observed in star forming regions younger than ~10 Myr. The large age dispersion is robust against variations in extinction (in the range E(B-V)=0-0.3 mag) and variations in the upper end of the stellar Initial Mass Function (IMF). In particular, we demonstrate that the age dispersion is insensitive to steepening of the IMF, up to extreme slopes.
172 - Richard M. McDermid 2012
I present a brief review of the stellar population properties of massive galaxies, focusing on early-type galaxies in particular, with emphasis on recent results from the ATLAS3D Survey. I discuss the occurrence of young stellar ages, cold gas, and ongoing star formation in early-type galaxies, the presence of which gives important clues to the evolutionary path of these galaxies. Consideration of empirical star formation histories gives a meaningful picture of galaxy stellar population properties, and allows accurate comparison of mass estimates from populations and dynamics. This has recently provided strong evidence of a non-universal IMF, as supported by other recent evidences. Spatially-resolved studies of stellar populations are also crucial to connect distinct components within galaxies to spatial structures seen in other wavelengths or parameters. Stellar populations in the faint outer envelopes of early-type galaxies are a formidable frontier for observers, but promise to put constraints on the ratio of accreted stellar mass versus that formed in situ - a key feature of recent galaxy formation models. Galaxy environment appears to play a key role in controlling the stellar population properties of low mass galaxies. Simulations remind us, however, that current day galaxies are the product of a complex assembly and environment history, which gives rise to the trends we see. This has strong implications for our interpretation of environmental trends.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا