Do you want to publish a course? Click here

Redshift Filtering by Swift Apparent X-ray Column Density

68   0   0.0 ( 0 )
 Added by Dirk Grupe
 Publication date 2006
  fields Physics
and research's language is English
 Authors Dirk Grupe




Ask ChatGPT about the research

We remark on the utility of an observational relation between the absorption column density in excess of the Galactic absorption column density, $Delta N_{rm H} = N_{rm H, fit} - N_{rm H, gal}$, and redshift, z, determined from all 55 Swift-observed long bursts with spectroscopic redshifts as of 2006 December. The absorption column densities, $N_{rm H, fit}$, are determined from powerlaw fits to the X-ray spectra with the absorption column density left as a free parameter. We find that higher excess absorption column densities with $Delta N_{rm H} > 2times 10^{21}$ cm$^{-2}$ are only present in bursts with redshifts z$<$2. Low absorption column densities with $Delta N_{rm H} < 1times 10^{21}$ cm$^{-2}$ appear preferentially in high-redshift bursts. Our interpretation is that this relation between redshift and excess column density is an observational effect resulting from the shift of the source rest-frame energy range below 1 keV out of the XRT observable energy range for high redshift bursts. We found a clear anti-correlation between $Delta N_{rm H}$ and z that can be used to estimate the range of the maximum redshift of an afterglow. A critical application of our finding is that rapid X-ray observations can be used to optimize the instrumentation used for ground-based optical/NIR follow-up observations. Ground-based spectroscopic redshift measurements of as many bursts as possible are crucial for GRB science.



rate research

Read More

70 - Roi Rahin , Ehud Behar 2020
X-ray line fluorescence is ubiquitous around powerful accretion sources, namely active galactic nuclei and X-ray binaries. The brightest and best-studied line is the Fe K$alpha$ line at $lambda = 1.937$AA (6.4,keV). This paper presents a survey of all well-measured Chandra/HETG grating spectra featuring several K$alpha$ fluorescence lines from elements between Mg and Ni. Despite the variety of sources and physical conditions, we identify a common trend that dictates the K$alpha$ line intensity ratios between elements. For the most part, the line intensities are well described by a simple, plane-parallel approximation of a near-neutral, solar-abundance, high column density ($N_{textrm{H}} > 10^{24}$ cm$^{-2}$) medium. This approximation gives canonical photon-intensity line ratios for the K$alpha$ fluorescence of all elements, e.g., 0.104:,0.069:,1.0:,0.043 for Si:,S:,Fe:,Ni, respectively. Deviations from these ratios are shown to be primarily due to excess column density along the line of sight beyond the Galactic column. Therefore, measured fluorescence line ratios provide an independent estimate of $N_{textrm{H}}$ and insight into the environment of accretion sources. Residual discrepancies with the canonical ratios could be due to a variety of effects such as a fluorescing medium with $N_{textrm{H}} < 10^{24}$,cm$^{-2}$, a non-neutral medium, variations in the illuminating spectrum, non-solar abundances, or an irregular source geometry. However, evidently and perhaps surprisingly, these are uncommon, and their effect remains minor.
114 - Darach Watson 2012
The afterglows of gamma-ray bursts (GRBs) have more soft X-ray absorption than expected from the foreground gas column in the Galaxy. While the redshift of the absorption can in general not be constrained from current X-ray observations, it has been assumed that the absorption is due to metals in the host galaxy of the GRB. The large sample of X-ray afterglows and redshifts now available allows the construction of statistically meaningful distributions of the metal column densities. We construct such a sample and show, as found in previous studies, that the typical absorbing column density (N_HX) increases substantially with redshift, with few high column density objects found at low to moderate redshifts. We show, however, that when highly extinguished bursts are included in the sample, using redshifts from their host galaxies, high column density sources are also found at low to moderate redshift. We infer from individual objects in the sample and from observations of blazars, that the increase in column density with redshift is unlikely to be related to metals in the intergalactic medium or intervening absorbers. Instead we show that the origin of the apparent increase with redshift is primarily due to dust extinction bias: GRBs with high X-ray absorption column densities found at $zlesssim4$ typically have very high dust extinction column densities, while those found at the highest redshifts do not. It is unclear how such a strongly evolving N_HX/A_V ratio would arise, and based on current data, remains a puzzle.
The Swift Gamma-Ray Explorer is designed to make prompt multiwavelength observations of Gamma-Ray Bursts (GRBs) and GRB afterglows. The X-ray Telescope (XRT) enables Swift to determine GRB positions with a few arcseconds accuracy within 100 seconds of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM/EPIC MOS CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with effective area of > 120 cm^2 at 1.5 keV, field of view of 23.6 x 23.6 arcminutes, and angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2x10^-14 erg cm^-2 s^-1 in 10^4 seconds. The instrument is designed to provide automated source detection and position reporting within 5 seconds of target acquisition. It can also measure the redshifts of GRBs with Fe line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return for each frame as the source intensity fades. The XRT will measure spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and will follow each burst for days or weeks.
Aims: Spectral and temporal analysis of the NuSTAR observation Galactic Be-XRB Swift J1845.7-0037. during its recent outburst. Methods: For the spectral analysis we use both phenomenological and physics-based models. We employ an often used empirical model to identify the main characteristics of the spectral shape in relation to nominal spectral characteristics of X-ray pulsars. Additionally, we used the latest version of Bulk & Thermal comptonization model (BW), to assess the validity of the spectral components required by the empirical model and to investigate the origin of the hard X-ray emission. We also analyzed the source light-curve, studying the pulse shape at different energy ranges and tracking the spectral evolution with pulse phase by using the model independent hardness ratio (HR). Results: We find that while both the empirical and physical (BW) spectral models can produce good spectral fits, the BW model returns physically plausible best-fit values for the source parameters and does not require any additional spectral components to the non-thermal, accretion column emission. The BW model also yielded an estimation of the neutron star magnetic field placing it in the 10^12G range. Conclusions: Our results, show that the spectral and temporal characteristics of the source emission are consistent with the scattering processes expected for radiation dominated shocks within the accretion column of highly magnetized accreting neutron stars. We further indicate that physically-derived spectral models such as BW, can be used to tentatively infer fundamental source parameters, in the absence of more direct observational signatures.
97 - D. Burlon 2008
We study a sample of Gamma-Ray Bursts detected by the Swift satellite with known redshift which show a precursor in the Swift-BAT light curve. We analyze the spectra of the precursors and compare them with the time integrated spectra of the prompt emission. We find neither a correlation between the two slopes nor a tendency for the precursors spectra to be systematically harder or softer than the prompt ones. The energetics of the precursors are large: on average, they are just a factor of a few less energetic (in the source rest frame energy range 15-150 keV) than the entire bursts. These properties do not depend upon the quiescent time between the end of the precursor and the start of the main event. These results suggest that what has been called a precursor is not a phenomenon distinct from the main event, but is tightly connected with it, even if, in some case, the quiescent time intervals can be longer than 100 seconds.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا