Do you want to publish a course? Click here

AEGIS: Infrared Spectral Energy Distributions of MIPS 70micron selected sources

60   0   0.0 ( 0 )
 Added by Myrto Symeonidis
 Publication date 2006
  fields Physics
and research's language is English
 Authors M. Symeonidis




Ask ChatGPT about the research

We present 0.5 -160 micron Spectral Energy Distributions (SEDs) of galaxies, detected at 70microns with the Multiband Imaging Photometer for Spitzer (MIPS), using broadband imaging data from Spitzer and ground-based telescopes. Spectroscopic redshifts, in the range 0.2<z<1.5, have been measured as part of the Deep Extragalactic Evolutionary Probe2 (DEEP2) project. Based on the SEDs we explore the nature and physical properties of the sources. Using the optical spectra we derive Hbeta and [OII]-based Star Formation Rates (SFR) which are 10-100 times lower than SFR estimates based on IR and radio. The median offset in SFR between optical and IR is reduced by a factor of ~3 when we apply a typical extinction corrections. We investigate mid-to-far infrared correlations for low redshift (>0.5) and high redshift (0.5<z<1.2) bins. Using this unique ``far-infrared selected sample we derive an empirical mid to far-infrared relationship that can be used to estimate the infrared energy budget of galaxies in the high-redshift universe. Our sample can be used as a template to translate far-infrared luminosities into bolometric luminosities for high redshift objects.



rate research

Read More

160 - Mark Lacy 2012
We present preliminary results on fitting of SEDs to 142 z>1 quasars selected in the mid-infrared. Our quasar selection finds objects ranging in extinction from highly obscured, type-2 quasars, through more lightly reddened type-1 quasars and normal type-1s. We find a weak tendency for the objects with the highest far-infrared emission to be obscured quasars, but no bulk systematic offset between the far-infrared properties of dusty and normal quasars as might be expected in the most naive evolutionary schemes. The hosts of the type-2 quasars have stellar masses comparable to those of radio galaxies at similar redshifts. Many of the type-1s, and possibly one of the type-2s require a very hot dust component in addition to the normal torus emission.
The All-wavelength Extended Groth Strip International Survey (AEGIS) team presents broad-band spectral energy distributions (SEDs), from X-ray to radio wavelengths, for 71 galaxies spanning the redshift range 0.55-1.16 (<z>~0.7). Galaxies with secure redshifts were selected from a small (22 arcminute-square) sub-section of the Keck/DEIMOS galaxy redshift survey in the Extended Groth Strip field that has also been targeted for deep panchromatic imaging by Chandra (X-ray), GALEX (ultraviolet), Canada-France-Hawaii Telescope (optical), Hubble Space Telescope (optical/near infrared), Palomar Observatory (near infrared), Spitzer (mid/far infrared), and the Very Large Array (radio.) The absolute magnitude of the typical galaxy in our sample is M_B=-19.82. The ultraviolet to mid-infrared portion of their spectral energy distributions (SEDs) are found to be bracketed by two stellar-only model SEDs: an early burst followed by passive evolution and a constant star-formation rate since early times; this suggests that few of these galaxies are undergoing major starbursts. Approximately half the galaxies show a mid- to far-infrared excess relative to the model SEDs, consistent with thermal emission from interstellar dust. Two objects have power-law SEDs, indicating that they are dominated by active galactic nuclei; both are detected in X-rays. The galaxies are grouped by rest-frame color,quantitative optical morphology, and [OII] emission line strength (possible indicator of star formation). On average, the panchromatic SEDs of the galaxies, from the ultraviolet to the infrared, follow expected trends: redder SEDs are associated with red U-B, early-type morphology, and low [OII] emission, and vice versa for blue SEDs.
120 - S. Berta , D. Lutz , P. Santini 2013
(abridged) Far-infrared Herschel photometry from the PEP and HerMES programs is combined with ancillary datasets in the GOODS-N, GOODS-S, and COSMOS fields. Based on this rich dataset, we reproduce the restframe UV to FIR ten-colors distribution of galaxies using a superposition of multi-variate Gaussian modes. The median SED of each mode is then fitted with a modified version of the MAGPHYS code that combines stellar light, emission from dust heated by stars and a possible warm dust contribution heated by an AGN. The defined Gaussian grouping is also used to identify rare sources. The zoology of outliers includes Herschel-detected ellipticals, very blue z~1 Ly-break galaxies, quiescent spirals, and torus-dominated AGN with star formation. Out of these groups and outliers, a new template library is assembled, consisting of 32 SEDs describing the intrinsic scatter in the restframe UV-to-submm colors of infrared galaxies. This library is tested against L(IR) estimates with and without Herschel data included, and compared to eight other popular methods often adopted in the literature. When implementing Herschel photometry, these approaches produce L(IR) values consistent with each other within a median absolute deviation of 10-20%, the scatter being dominated more by fine tuning of the codes, rather than by the choice of SED templates. Finally, the library is used to classify 24 micron detected sources in PEP GOODS fields. AGN appear to be distributed in the stellar mass (M*) vs. star formation rate (SFR) space along with all other galaxies, regardless of the amount of infrared luminosity they are powering, with the tendency to lie on the high SFR side of the main sequence. The incidence of warmer star-forming sources grows for objects with higher specific star formation rates (sSFR), and they tend to populate the off-sequence region of the M*-SFR-z space.
The Spitzer Infrared Nearby Galaxies Survey (SINGS) is carrying out a comprehensive multi-wavelength survey on a sample of 75 nearby galaxies. The 1-850um spectral energy distributions are presented using broadband imaging data from Spitzer, 2MASS, ISO, IRAS, and SCUBA. The infrared colors derived from the globally-integrated Spitzer data are generally consistent with the previous generation of models that were developed based on global data for normal star-forming galaxies, though significant deviations are observed. Spitzers excellent sensitivity and resolution also allow a detailed investigation of the infrared spectral energy distributions for various locations within the three large, nearby galaxies NGC3031 (M81), NGC5194 (M51), and NGC7331. Strong correlations exist between the local star formation rate and the infrared colors f_nu(70um)/f_nu(160um) and f_nu(24um)/f_nu(160um), suggesting that the 24 and 70um emission are useful tracers of the local star formation activity level. Preliminary evidence indicates that variations in the 24um emission, and not variations in the emission from polycyclic aromatic hydrocarbons at 8um, drive the variations in the f_nu(8.0um)/f_nu(24um) colors within NGC3031, NGC5194, and NGC7331. If the galaxy-to-galaxy variations in spectral energy distributions seen in our sample are representative of the range present at high redshift then extrapolations of total infrared luminosities and star formation rates from the observed 24um flux will be uncertain at the factor-of-five level (total range). The corresponding uncertainties using the redshifted 8.0um flux (e.g. observed 24um flux for a z=2 source) are factors of 10-20. Considerable caution should be used when interpreting such extrapolated infrared luminosities.
We present the first AGN census in a sample of 61 galaxies selected at 70microns, a wavelength which should strongly favour the detection of star-forming systems. For the purpose of this study we take advantage of deep Chandra X-ray and Spitzer infrared (3.6-160micron) data, as well as optical spectroscopy and photometry from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) survey for the Extended Groth Strip (EGS) field. We investigate spectral line diagnostics ([OIII]/Hbeta and [NeIII]/[OII] ratios, Hdelta Balmer absorption line equivalent widths and the strength of the 4000Ang break), X-ray luminosities and spectral energy distributions (SEDs). We find that the 70micron sources are undergoing starburst episodes and are therefore characterised by a predominance of young stars. In addition, 13 per cent of the sources show AGN signatures and hence potentially host an AGN. When the sample is split into starbursts (SBs, 10^10<L_IR<10^11 L_solar), Luminous InfraRed Galaxies (LIRGs, 10^11<L_IR<10^12 L_solar) and UltraLuminous InfraRed Galaxies (ULIRGs,10^12<L_IR<10^13 L_solar), the AGN fraction becomes 0, 11 and 23 per cent respectively, showing an increase with total infrared luminosity. However, by examining the sources panchromatic SEDs, we conclude that although the AGN is energetically important in 1 out of 61 objects, all 70micron-selected galaxies are primarily powered by star-formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا