Do you want to publish a course? Click here

The RAVE Survey: Constraining the Local Galactic Escape Speed

299   0   0.0 ( 0 )
 Added by Martin C. Smith
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report new constraints on the local escape speed of our Galaxy. Our analysis is based on a sample of high velocity stars from the RAVE survey and two previously published datasets. We use cosmological simulations of disk galaxy formation to motivate our assumptions on the shape of the velocity distribution, allowing for a significantly more precise measurement of the escape velocity compared to previous studies. We find that the escape velocity lies within the range $498kms < ve < 608 kms$ (90 per cent confidence), with a median likelihood of $544kms$. The fact that $ve^2$ is significantly greater than $2vc^2$ (where $vc=220kms$ is the local circular velocity) implies that there must be a significant amount of mass exterior to the Solar circle, i.e. this convincingly demonstrates the presence of a dark halo in the Galaxy. For a simple isothermal halo, one can calculate that the minimum radial extent is $sim58$ kpc. We use our constraints on $ve$ to determine the mass of the Milky Way halo for three halo profiles. For example, an adiabatically contracted NFW halo model results in a virial mass of $1.42^{+1.14}_{-0.54}times10^{12}M_odot$ and virial radius of $305^{+66}_{-45}$ kpc (90 per cent confidence). For this model the circular velocity at the virial radius is $142^{+31}_{-21}kms$. Although our halo masses are model dependent, we find that they are in good agreement with each other.



rate research

Read More

We construct new estimates on the Galactic escape speed at various Galactocentric radii using the latest data release of the Radial Velocity Experiment (RAVE DR4). Compared to previous studies we have a database larger by a factor of 10 as well as reliable distance estimates for almost all stars. Our analysis is based on the statistical analysis of a rigorously selected sample of 90 high-velocity halo stars from RAVE and a previously published data set. We calibrate and extensively test our method using a suite of cosmological simulations of the formation of Milky Way-sized galaxies. Our best estimate of the local Galactic escape speed, which we define as the minimum speed required to reach three virial radii $R_{340}$, is $533^{+54}_{-41}$ km/s (90% confidence) with an additional 5% systematic uncertainty, where $R_{340}$ is the Galactocentric radius encompassing a mean over-density of 340 times the critical density for closure in the Universe. From the escape speed we further derive estimates of the mass of the Galaxy using a simple mass model with two options for the mass profile of the dark matter halo: an unaltered and an adiabatically contracted Navarro, Frenk & White (NFW) sphere. If we fix the local circular velocity the latter profile yields a significantly higher mass than the un-contracted halo, but if we instead use the statistics on halo concentration parameters in large cosmological simulations as a constraint we find very similar masses for both models. Our best estimate for $M_{340}$, the mass interior to $R_{340}$ (dark matter and baryons), is $1.3^{+0.4}_{-0.3} times 10^{12}$ M$_odot$ (corresponding to $M_{200} = 1.6^{+0.5}_{-0.4} times 10^{12}$ M$_odot$). This estimate is in good agreement with recently published independent mass estimates based on the kinematics of more distant halo stars and the satellite galaxy Leo I.
309 - Alis J. Deason 2019
We model the fastest moving (v_tot > 300 km/s) local (D < 3 kpc) halo stars using cosmological simulations and 6-dimensional Gaia data. Our approach is to use our knowledge of the assembly history and phase-space distribution of halo stars to constrain the form of the high velocity tail of the stellar halo. Using simple analytical models and cosmological simulations, we find that the shape of the high velocity tail is strongly dependent on the velocity anisotropy and number density profile of the halo stars --- highly eccentric orbits and/or shallow density profiles have more extended high velocity tails. The halo stars in the solar vicinity are known to have a strongly radial velocity anisotropy, and it has recently been shown the origin of these highly eccentric orbits is the early accretion of a massive (M_star ~ 10^9 M_Sun) dwarf satellite. We use this knowledge to construct a prior on the shape of the high velocity tail. Moreover, we use the simulations to define an appropriate outer boundary of 2r_200, beyond which stars can escape. After applying our methodology to the Gaia data, we find a local (r_0=8.3 kpc) escape speed of v_esc(r_0) = 528(+24,-25) km/s. We use our measurement of the escape velocity to estimate the total Milky Way mass, and dark halo concentration: M_200,tot = 1.00(+0.31,-0.24) x 10^12 M_Sun, c_200 = 10.9(+4.4,-3.3). Our estimated mass agrees with recent results in the literature that seem to be converging on a Milky Way mass of M_200,tot ~ 10^12 M_Sun.
Direct detection (DD) of dark matter (DM) candidates in the $lesssim$10 GeV mass range is very sensitive to the tail of their velocity distribution. The important quantity is the maximum WIMP speed in the observers rest frame, i.e. in average the sum of the local Galactic escape speed $v_{rm esc}$ and of the circular velocity of the Sun $v_c$. While the latter has been receiving continuous attention, the former is more difficult to constrain. The RAVE Collaboration has just released a new estimate of $v_{rm esc}$ (Piffl {em et al.}, 2014 --- P14) that supersedes the previous one (Smith {em et al.}, 2007), which is of interest in the perspective of reducing the astrophysical uncertainties in DD. Nevertheless, these new estimates cannot be used blindly as they rely on assumptions in the dark halo modeling which induce tight correlations between the escape speed and other local astrophysical parameters. We make a self-consistent study of the implications of the RAVE results on DD assuming isotropic DM velocity distributions, both Maxwellian and ergodic. Taking as references the experimental sensitivities currently achieved by LUX, CRESST-II, and SuperCDMS, we show that: (i) the exclusion curves associated with the best-fit points of P14 may be more constraining by up to $sim 40$% with respect to standard limits, because the underlying astrophysical correlations induce a larger local DM density; (ii) the corresponding relative uncertainties inferred in the low WIMP mass region may be moderate, down to 10-15% below 10 GeV. We finally discuss the level of consistency of these results with other independent astrophysical constraints. This analysis is complementary to others based on rotation curves.
We use the kinematics of $sim200,000$ giant stars that lie within $sim 1.5$ kpc of the plane to measure the vertical profile of mass density near the Sun. We find that the dark mass contained within the isodensity surface of the dark halo that passes through the Sun ($(6pm0.9)times10^{10},mathrm{M_odot}$), and the surface density within $0.9$ kpc of the plane ($(69pm10),mathrm{M_odot,pc^{-2}}$) are almost independent of the (oblate) halos axis ratio $q$. If the halo is spherical, 46 per cent of the radial force on the Sun is provided by baryons, and only 4.3 per cent of the Galaxys mass is baryonic. If the halo is flattened, the baryons contribute even less strongly to the local radial force and to the Galaxys mass. The dark-matter density at the location of the Sun is $0.0126,q^{-0.89},mathrm{M_odot,pc^{-3}}=0.48,q^{-0.89},mathrm{GeV,cm^{-3}}$. When combined with other literature results we find hints for a mildly oblate dark halo with $q simeq 0.8$. Our value for the dark mass within the solar radius is larger than that predicted by cosmological dark-matter-only simulations but in good agreement with simulations once the effects of baryonic infall are taken into account. Our mass models consist of three double-exponential discs, an oblate bulge and a Navarro-Frenk-White dark-matter halo, and we model the dynamics of the RAVE stars in the corresponding gravitational fields by finding distribution functions $f(mathbf{J})$ that depend on three action integrals. Statistical errors are completely swamped by systematic uncertainties, the most important of which are the distance to the stars in the photometric and spectroscopic samples and the solar distance to the Galactic centre. Systematics other than the flattening of the dark halo yield overall uncertainties $sim 15$ per cent.
We characterize the selection function of RAVE using 2MASS as our underlying population, which we assume represents all stars which could have potentially been observed. We evaluate the completeness fraction as a function of position, magnitude, and color in two ways: first, on a field-by-field basis, and second, in equal-size areas on the sky. Then, we consider the effect of the RAVE stellar parameter pipeline on the final resulting catalogue, which in principle limits the parameter space over which our selection function is valid. Our final selection function is the product of the completeness fraction and the selection function of the pipeline. We then test if the application of the selection function introduces biases in the derived parameters. To do this, we compare a parent mock catalogue generated using Galaxia with a mock-RAVE catalogue where the selection function of RAVE has been applied. We conclude that for stars brighter than I = 12, between $4000 rm K < T_{rm eff} < 8000 rm K$ and $0.5 < rm{log},g < 5.0$, RAVE is kinematically and chemically unbiased with respect to expectations from Galaxia.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا