Do you want to publish a course? Click here

The selection function of the RAVE survey

119   0   0.0 ( 0 )
 Added by Jennifer Wojno
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We characterize the selection function of RAVE using 2MASS as our underlying population, which we assume represents all stars which could have potentially been observed. We evaluate the completeness fraction as a function of position, magnitude, and color in two ways: first, on a field-by-field basis, and second, in equal-size areas on the sky. Then, we consider the effect of the RAVE stellar parameter pipeline on the final resulting catalogue, which in principle limits the parameter space over which our selection function is valid. Our final selection function is the product of the completeness fraction and the selection function of the pipeline. We then test if the application of the selection function introduces biases in the derived parameters. To do this, we compare a parent mock catalogue generated using Galaxia with a mock-RAVE catalogue where the selection function of RAVE has been applied. We conclude that for stars brighter than I = 12, between $4000 rm K < T_{rm eff} < 8000 rm K$ and $0.5 < rm{log},g < 5.0$, RAVE is kinematically and chemically unbiased with respect to expectations from Galaxia.



rate research

Read More

We present a detailed analysis of the selection function of the LAMOST Spectroscopic Survey of the Galactic Anti-centre (LSS-GAC). LSS-GAC was designed to obtain low resolution optical spectra for a sample of more than 3 million stars in the Galactic anti-centre. The second release of value-added catalogues of the LSS-GAC (LSS-GAC DR2) contains stellar parameters, including radial velocity, atmospheric parameters, elemental abundances and absolute magnitudes deduced from 1.8 million spectra of 1.4 million unique stars targeted by the LSS-GAC between 2011 and 2014. For many studies using this database, such as those investigating the chemodynamical structure of the Milky Way, a detailed understanding of the selection function of the survey is indispensable. In this paper, we describe how the selection function of the LSS-GAC can be evaluated to sufficient detail and provide selection function corrections for all spectroscopic measurements with reliable parameters released in LSS-GAC DR2. The results, to be released as new entries in the LSS-GAC value-added catalogues, can be used to correct the selection effects of the catalogue for scientific studies of various purposes.
121 - B. Burnett , J. Binney , S. Sharma 2011
We apply the method of Burnett & Binney (2010) for the determination of stellar distances and parameters to the internal catalogue of the Radial Velocity Experiment (Steinmetz et al. 2006). Subsamples of stars that either have Hipparcos parallaxes or belong to well-studied clusters, inspire confidence in the formal errors. Distances to dwarfs cooler than ~6000 K appear to be unbiased, but those to hotter dwarfs tend to be too small by ~10% of the formal errors. Distances to giants tend to be too large by about the same amount. The median distance error in the whole sample of 216,000 stars is 28% and the error distribution is similar for both giants and dwarfs. Roughly half the stars in the RAVE survey are giants. The giant fraction is largest at low latitudes and in directions towards the Galactic Centre. Near the plane the metallicity distribution is remarkably narrow and centred on [M/H]-0.04 dex; with increasing |z| it broadens out and its median moves to [M/H] ~ -0.5. Mean age as a function of distance from the Galactic centre and distance |z| from the Galactic plane shows the anticipated increase in mean age with |z|.
APOGEE-2 is a high-resolution, near-infrared spectroscopic survey observing roughly 300,000 stars across the entire sky. It is the successor to APOGEE and is part of the Sloan Digital Sky Survey IV (SDSS-IV). APOGEE-2 is expanding upon APOGEEs goals of addressing critical questions of stellar astrophysics, stellar populations, and Galactic chemodynamical evolution using (1) an enhanced set of target types and (2) a second spectrograph at Las Campanas Observatory in Chile. APOGEE-2 is targeting red giant branch (RGB) and red clump (RC) stars, RR Lyrae, low-mass dwarf stars, young stellar objects, and numerous other Milky Way and Local Group sources across the entire sky from both hemispheres. In this paper, we describe the APOGEE-2 observational design, target selection catalogs and algorithms, and the targeting-related documentation included in the SDSS data releases.
The DESI Milky Way Survey (MWS) will observe $ge$8 million stars between $16 < r < 19$ mag, supplemented by observations of brighter targets under poor observing conditions. The survey will permit an accurate determination of stellar kinematics and population gradients; characterize diffuse substructure in the thick disk and stellar halo; enable the discovery of extremely metal-poor stars and other rare stellar types; and improve constraints on the Galaxys 3D dark matter distribution from halo star kinematics. MWS will also enable a detailed characterization of the stellar populations within 100 pc of the Sun, including a complete census of white dwarfs. The target catalog from the preliminary selection described here is public.
We construct new estimates on the Galactic escape speed at various Galactocentric radii using the latest data release of the Radial Velocity Experiment (RAVE DR4). Compared to previous studies we have a database larger by a factor of 10 as well as reliable distance estimates for almost all stars. Our analysis is based on the statistical analysis of a rigorously selected sample of 90 high-velocity halo stars from RAVE and a previously published data set. We calibrate and extensively test our method using a suite of cosmological simulations of the formation of Milky Way-sized galaxies. Our best estimate of the local Galactic escape speed, which we define as the minimum speed required to reach three virial radii $R_{340}$, is $533^{+54}_{-41}$ km/s (90% confidence) with an additional 5% systematic uncertainty, where $R_{340}$ is the Galactocentric radius encompassing a mean over-density of 340 times the critical density for closure in the Universe. From the escape speed we further derive estimates of the mass of the Galaxy using a simple mass model with two options for the mass profile of the dark matter halo: an unaltered and an adiabatically contracted Navarro, Frenk & White (NFW) sphere. If we fix the local circular velocity the latter profile yields a significantly higher mass than the un-contracted halo, but if we instead use the statistics on halo concentration parameters in large cosmological simulations as a constraint we find very similar masses for both models. Our best estimate for $M_{340}$, the mass interior to $R_{340}$ (dark matter and baryons), is $1.3^{+0.4}_{-0.3} times 10^{12}$ M$_odot$ (corresponding to $M_{200} = 1.6^{+0.5}_{-0.4} times 10^{12}$ M$_odot$). This estimate is in good agreement with recently published independent mass estimates based on the kinematics of more distant halo stars and the satellite galaxy Leo I.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا