Do you want to publish a course? Click here

Stellar abundances of early-type galaxies

127   0   0.0 ( 0 )
 Added by Scott C. Trager
 Publication date 2006
  fields Physics
and research's language is English
 Authors S.C. Trager




Ask ChatGPT about the research

It is currently impossible to determine the abundances of stellar populations star-by-star in dense stellar systems more distant than a few megaparsecs. Therefore, methods to analyse the composite light of stellar systems are required. I review recent progress in determining the abundances and abundance ratios of early-type galaxies. I begin with `direct abundance measurements: colour--magnitude diagrams of and planetary nebula in nearby early-type galaxies. I then give an overview of `indirect abundance measurements: inferences from stellar population models, with an emphasis on cross-checks with `direct methods. I explore the variations of early-type galaxy abundances as a function of mass, age, and environment in the local Universe. I conclude with a list of continuing difficulties in the modelling that complicate the interpretation of integrated spectra and I look ahead to new methods and new observations.



rate research

Read More

While we observe a large amount of cold interstellar gas and dust in a subset of the early-type galaxy (ETG) population, the source of this material remains unclear. The two main, competing scenarios are external accretion of lower mass, gas-rich dwarfs and internal production from stellar mass loss and/or cooling from the hot interstellar medium (ISM). We test these hypotheses with measurements of the stellar and nebular metallicities of three ETGs (NGC 2768, NGC 3245, and NGC 4694) from new long-slit, high signal-to-noise ratio spectroscopy from the Multi-Object Double Spectographs (MODs) on the Large Binocular Telescope (LBT). These ETGs have modest star formation rates and minimal evidence of nuclear activity. We model the stellar continuum to derive chemical abundances and measure gas-phase abundances with standard nebular diagnostics. We find that the stellar and gas-phase abundances are very similar, which supports internal production and is very inconsistent with the accretion of smaller, lower metallicity dwarfs. All three of these galaxies are also consistent with an extrapolation of the mass-metallicity relation to higher mass galaxies with lower specific star formation rates. The emission line flux ratios along the long-slit, as well as global line ratios clearly indicate that photoionization dominates and ionization by alternate sources including AGN activity, shocks, cosmic rays, dissipative magnetohydrodynamic waves, and single degenerate Type Ia supernovae progenitors do not significantly affect the line ratios.
272 - Elisa Toloba UCM 2008
For the first time, we undertake a systematic examination of the nitrogen abundances for a sample of 35 early-type galaxies spanning a range of masses and local environment. The nitrogen-sensitive molecular feature at 3360AA has been employed in conjunction with a suite of atomic- and molecular-sensitive indices to provide unique and definitive constraints on the chemical content of these systems. By employing NH3360, we are now able to break the carbon, nitrogen, and oxygen degeneracies inherent to the use of the CN-index. We demonstrate that the NH3360 feature shows little dependency upon the velocity dispersion (our proxy for mass) of the galaxies, contrary to what is seen for carbon- and magnesium-sensitive indices. At face value, these results are at odds with conclusions drawn previously using indices sensitive to both carbon and nitrogen, such as cyanogen (CN). With the aid of stellar population models, we find that the N/Fe ratios in these galaxies are consistent with being mildly-enhanced with respect to the solar ratio. We also explore the dependence of these findings upon environment, by analyzing the co-added spectra of galaxies in the field and the Coma cluster. We confirm the previously found differences in carbon abundances between galaxies in low- and high-density environments, while showing that these differences do not seem to exist for nitrogen. We discuss the implications of these findings for the derivation of the star formation histories in early-type galaxies, and for the origin of carbon and nitrogen, themselves.
We suggest and verify a new photometric method enabling derivation of relative thickness of a galactic disk from two-dimensional surface-brightness distribution of the galaxy in the plane of the sky. The method is applied to images of 45 early-type (S0-Sb) galaxies with known radial exponential or double-exponential (with a flatter outer profile) surface-brightness distributions. The data in the r-band have been retrieved from the SDSS archive. Statistics of the estimated relative thicknesses of the stellar disks of early-type disk galaxies shows the following features. The disks of lenticular and early-type spiral galaxies have similar thicknesses. The presence of a bar results in only a slight marginal increase of the thickness. However, we have found a substantial difference between the thicknesses of the disks with a single-scaled exponential brightness profile and the disks that represent the inner segments of the Type III (antitruncated) profiles. The disks are significantly thicker in the former subsample than in the latter one. This may provide evidence for a surface-brightness distribution of a single-scaled exponential disk to be formed due to viscosity effects acting over the entire period of star formation in the disk.
225 - F. Annibali 2007
We have acquired intermediate resolution spectra in the 3700-7000 A wavelength range for a sample of 65 early-type galaxies predominantly located in low density environments, a large fraction of which show emission lines. The spectral coverage and the high quality of the spectra allowed us to derive Lick line-strength indices and to study their behavior at different galacto-centric distances. Ages, metallicities and element abundance ratios have been derived for the galaxy sample by comparison of the line-strength index data set with our new developed Simple Stellar Population (SSP) models. We have analyzed the behavior of the derived stellar population parameters with the central galaxy velocity dispersion and the local galaxy density in order to understand the role played by mass and environment on the evolution of early-type galaxies. We find that the chemical path is mainly driven by the halo mass, more massive galaxies exhibiting the more efficient chemical enrichment and shorter star formation timescales. Galaxies in denser environments are on average older than galaxies in less dense environments. The last ones show a large age spread which is likely to be due to rejuvenation episodes.
The late assembly of massive galaxies is thought to be dominated by stellar accretion in their outskirts (beyond 2 effective radii Re) due to dry, minor galaxy mergers. We use observations of 1010 passive early-type galaxies (ETGs) within z<0.15 from SDSS IV MaNGA to search for evidence of this accretion. The outputs from the stellar population fitting codes FIREFLY, pPXF, and Prospector are compared to control for systematic errors in stellar metallicity (Z) estimation. We find that the average radial logZ/Zsun profiles of ETGs in various stellar mass (M) bins are not linear. As a result, these profiles are poorly characterized by a single gradient value, explaining why weak trends reported in previous work can be difficult to interpret. Instead, we examine the full radial extent of stellar metallicity profiles and find them to flatten in the outskirts of M>10^{11}Msun ETGs. This is a signature of stellar accretion. Based on a toy model for stellar metallicity profiles, we infer the ex-situ stellar mass fraction in ETGs as a function of M and galactocentric radius. We find that ex-situ stars at 2Re make up 20% of the projected stellar mass of M<10^{10.5}Msun ETGs, rising up to 80% for M>10^{11.5}Msun ETGs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا