Do you want to publish a course? Click here

Stellar Populations in Field Early-Type Galaxies

226   0   0.0 ( 0 )
 Added by Francesca Annibali
 Publication date 2007
  fields Physics
and research's language is English
 Authors F. Annibali




Ask ChatGPT about the research

We have acquired intermediate resolution spectra in the 3700-7000 A wavelength range for a sample of 65 early-type galaxies predominantly located in low density environments, a large fraction of which show emission lines. The spectral coverage and the high quality of the spectra allowed us to derive Lick line-strength indices and to study their behavior at different galacto-centric distances. Ages, metallicities and element abundance ratios have been derived for the galaxy sample by comparison of the line-strength index data set with our new developed Simple Stellar Population (SSP) models. We have analyzed the behavior of the derived stellar population parameters with the central galaxy velocity dispersion and the local galaxy density in order to understand the role played by mass and environment on the evolution of early-type galaxies. We find that the chemical path is mainly driven by the halo mass, more massive galaxies exhibiting the more efficient chemical enrichment and shorter star formation timescales. Galaxies in denser environments are on average older than galaxies in less dense environments. The last ones show a large age spread which is likely to be due to rejuvenation episodes.



rate research

Read More

58 - Fatma M. Reda 2007
We present radial stellar population parameters for a subsample of 12 galaxies from the 36 isolated early-type galaxies of Reda et al. Using new long-slit spectra, central values and radial gradients for the stellar age, metallicity [Z/H] and alpha-element abundance [E/Fe] are measured. Similarly, the central stellar population parameters are derived for a further 5 isolated early-type galaxies using their Lick indices from the literature. On average, the seventeen isolated galaxies have mean central [Z/H]o and [E/Fe]o of 0.29+/-0.03 and 0.17+/-0.03 respectively and span a wide range of ages from 1.7 to 15 Gyrs. We find that isolated galaxies follow similar scaling relations between central stellar population parameters and galaxy velocity dispersion to their counterparts in high density environments. However, we note a tendency for isolated galaxies to have slightly younger ages, higher [Z/H] and lower [E/Fe]. Such properties are qualitatively consistent with the expectation of an extended star formation history for galaxies in lower density environments. Generally we measure constant age and [E/Fe] radial gradients. We find that the age gradients anti-correlate with the central galaxy age. Metallicity gradients range from near zero to strongly negative. For our high mass galaxies metallicity gradients are shallower with increasing mass. Such behaviour is not predicted in dissipational collapse models but might be expected in multiple mergers. The metallicity gradients correlate with the central age and metallicity, as well as to the age gradients. In conclusion, our stellar population data for isolated galaxies are more compatible with an extended merger/accretion history than early dissipative collapse.
We present a spectroscopic analysis based on measurements of two mainly age-dependent spectrophotometric indices in the 4000A rest frame region, i.e. H+K(CaII) and Delta4000, for a sample of 15 early-type galaxies (ETGs) at 0.7 < z_{spec} < 1.1, morphologically selected in the GOODS-South field. Ages derived from the two different indices by means of the comparison with stellar population synthesis models, are not consistent with each other for at least nine galaxies (60 per cent of the sample), while for the remaining six galaxies, the ages derived from their global spectral energy distribution (SED) fitting are not consistent with those derived from the two indices. We then hypothesized that the stellar content of many galaxies is made of two stellar components with different ages. The double-component analysis, performed by taking into account both the index values and the observed SED, fully explains the observational data and improves the results of the standard one-component SED fitting in 9 out of the 15 objects, i.e. those for which the two indices point towards two different ages. In all of them, the bulk of the mass belongs to rather evolved stars, while a small mass fraction is many Gyr younger. In some cases, thanks to the sensitivity of the H+K(CaII) index, we find that the minor younger component reveals signs of recent star formation. The distribution of the ages of the younger stellar components appears uniformly in time and this suggests that small amounts of star formation could be common during the evolution of high-z ETGs. We argue the possibility that these new star formation episodes could be frequently triggered by internal causes due to the presence of small gas reservoir.
The SAURON project will deliver two-dimensional spectroscopic data of a sample of nearby early-type galaxies with unprecedented quality. In this paper, we focus on the mapping of their stellar populations using the SAURON data, and present some preliminary results on a few prototypical cases.
We present line-strength gradients for 22 spectral indices measured in a sample of 82 early-type galaxies in different environments,including the high-density core of the Coma cluster, the Virgo cluster,poor groups,and field galaxies. We derive age and metallicity gradients, and compare the mean values with the predictions of different galaxy formation models. We explore the behaviour of individual chemical species by deriving the metallicity gradient with different indicators.We find that the strength of the metallicity gradient inferred from stellar population models depends on the specific Lick index employed. In particular, metallicity gradients obtained with CN2 and C4668 combined with Hb are steeper than when measured using Ca4227 or Fe4383. The correlation of the metallicity gradients with other parameters also depends on the specific index employed. If the metallicity gradient is obtained using CN2 and Mgb then it correlates with the central age of the galaxies. On the contrary, if Fe4383 or Ca4227 are used, the metallicity gradient correlates with the velocity dispersion gradient.This may suggests that several mechanism have helped to set the age and metallicity gradients in early-type galaxies. While we do not find any correlation between the metallicity gradient and the central velocity dispersion for galaxies in low-density environments, we find a marginal correlation between the metallicity gradient and the mass for galaxies in the centre of the Coma cluster. We also find a trend for which galaxies in denser environments show a steeper metallicity gradient than galaxies in less dense environments.We interpret these results in light of the different models to explain the differences between galaxies as a function of environment.
We observed twelve nearby HI -detected early-type galaxies (ETGs) of stellar mass $sim 10^{10}Modot leq M_* leq sim 10^{11}Modot$ with the Mitchell Integral-Field Spectrograph, reaching approximately three half-light radii in most cases. We extracted line-of-sight velocity distributions for the stellar and gaseous components. We find little evidence of transitions in the stellar kinematics of the galaxies in our sample beyond the central effective radius, with centrally fast-rotating galaxies remaining fast-rotating and centrally slow-rotating galaxies likewise remaining slow-rotating. This is consistent with these galaxies having not experienced late dry major mergers; however, several of our objects have ionised gas that is misaligned with respect to their stars, suggesting some kind of past interaction. We extract Lick index measurements of the commonly-used H$beta$, Fe5015, Mg, b, Fe5270 and Fe5335 absorption features, and we find most galaxies to have flat H$beta$ gradients and negative Mg, b gradients. We measure gradients of age, metallicity and abundance ratio for our galaxies using spectral fitting, and for the majority of our galaxies find negative age and metallicity gradients. We also find the stellar mass-to-light ratios to decrease with radius for most of the galaxies in our sample. Our results are consistent with a view in which intermediate-mass ETGs experience mostly quiet evolutionary histories, but in which many have experienced some kind of gaseous interaction in recent times.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا