Do you want to publish a course? Click here

The Galaxy Power Spectrum: 2dFGRS-SDSS tension?

66   0   0.0 ( 0 )
 Added by Shaun Cole
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Published galaxy power spectra from the 2dFGRS and SDSS are not in good agreement. We revisit this issue by analyzing both the 2dFGRS and SDSS DR5 catalogues using essentially identical technqiues. We confirm that the 2dFGRS exhibits relatively more large scale power than the SDSS, or, equivalently, SDSS has more small scale power. We demonstrate that this difference is due the r-band selected SDSS catalogue being dominated by more strongly clustered red galaxies, due to these galaxies having a stronger scale dependent bias. The power spectra of galaxies of the same rest frame colours from the two surveys match well. It is therefore important to accurately model scale dependent bias to get accurate estimates of cosmological parameters from these power spectra.



rate research

Read More

We have analysed the distribution of galaxies in groups identified in the largest redshift surveys at the present: the final release of the 2dF Galaxy Redshift Survey and the first release of the Sloan Digital Sky Survey. Our work comprises the study of the galaxy density profiles and the fraction of galaxies per spectral type as a function of the group-centric distance. We have calculated the projected galaxy density profiles of galaxy groups using composite samples in order to increase the statistical significance of the results. Special cares have been taken in order to avoid possible biases in the group identification and the construction of the projected galaxy density profile estimator. The results show that the projected galaxy density profiles obtained for both redshift surveys are in agreement with a projected Navarro, Frenk & White predictions in the range $0.15< r/r_{200} < 1$, whereas a good fit for the measured profiles in the whole range of $r/r_{200}$ is given by a projected King profile. We have adopted a generalized King profile to fit the measured projected density profiles per spectral type. In order to infer the 3-D galaxy density profiles, we deproject the 2-D density profiles using a deprojection method similar to the developed by Allen & Fabian. From 2-D and 3-D galaxy density profiles we have estimated the corresponding galaxy fractions per spectral type. The 2-D fraction of galaxies computed using the projected profiles show a similar segregation of galaxy spectral types as the obtained by Dom{i}nguez et al. for groups in the early data release of the 2dF Galaxy Redshift Survey. As expected, the trends obtained for the 3-D galaxy fractions show steeper slopes than the observed in the 2-D fractions.
We present a Fourier analysis of the clustering of galaxies in the combined Main galaxy and Luminous Red Galaxy (LRG) Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5) sample. The aim of our analysis is to consider how well we can measure the cosmological matter density using the signature of the horizon at matter-radiation equality embedded in the large-scale power spectrum. The new data constrains the power spectrum on scales 100--600h^-1Mpc with significantly higher precision than previous analyses of just the SDSS Main galaxies, due to our larger sample and the inclusion of the LRGs. This improvement means that we can now reveal a discrepancy between the shape of the measured power and linear CDM models on scales 0.01<k<0.15hMpc^-1, with linear model fits favouring a lower matter density (Omega_m=0.22+/-0.04) on scales 0.01<k<0.06hMpc^-1 and a higher matter density (Omega_m=0.32+/-0.01) when smaller scales are included, assuming a flat LCDM model with h=0.73 and n_s=0.96. This discrepancy could be explained by scale-dependent bias and, by analysing subsamples of galaxies, we find that the ratio of small-scale to large-scale power increases with galaxy luminosity, so all of the SDSS galaxies cannot trace the same power spectrum shape over 0.01<k<0.2hMpc^-1. However, the data are insufficient to clearly show a luminosity-dependent change in the largest scale at which a significant increase in clustering is observed, although they do not rule out such an effect. Significant scale-dependent galaxy bias on large-scales, which changes with the r-band luminosity of the galaxies, could potentially explain differences in our Omega_m estimates and differences previously observed between 2dFGRS and SDSS power spectra and the resulting parameter constraints.
204 - Ariel G. Sanchez 2005
We derive constraints on cosmological parameters using the power spectrum of galaxy clustering measured from the final two-degree field galaxy redshift survey (2dFGRS) and a compilation of measurements of the temperature power spectrum and temperature-polarization cross-correlation of the cosmic microwave background radiation. We analyse a range of parameter sets and priors, allowing for massive neutrinos, curvature, tensors and general dark energy models. In all cases, the combination of datasets tightens the constraints, with the most dramatic improvements found for the density of dark matter and the energy-density of dark energy. If we assume a flat universe, we find a matter density parameter of $Omega_{rm m}=0.237 pm 0.020$, a baryon density parameter of $Omega_{rm b} = 0.041 pm 0.002$, a Hubble constant of $H_{0}=74pm2 {rm kms}^{-1}{rm Mpc}^{-1}$, a linear theory matter fluctuation amplitude of $sigma_{8}=0.77pm0.05$ and a scalar spectral index of $n_{rm s}=0.954 pm 0.023$ (all errors show the 68% interval). Our estimate of $n_{rm s}$ is only marginally consistent with the scale invariant value $n_{rm s}=1$; this spectrum is formally excluded at the 95% confidence level. However, the detection of a tilt in the spectrum is sensitive to the choice of parameter space. If we allow the equation of state of the dark energy to float, we find $w_{rm DE}= -0.85_{-0.17}^{+0.18}$, consistent with a cosmological constant. We also place new limits on the mass fraction of massive neutrinos: $f_{ u} < 0.105$ at the 95% level, corresponding to $sum m_{ u} < 1.2$ eV.
We analyse the observed correlation between galaxy environment and H-alpha emission line strength, using volume-limited samples and group catalogues of 24968 galaxies drawn from the 2dF Galaxy Redshift Survey (Mb<-19.5) and the Sloan Digital Sky Survey (Mr<-20.6). We characterise the environment by 1) Sigma_5, the surface number density of galaxies determined by the projected distance to the 5th nearest neighbour; and 2) rho1.1 and rho5.5, three-dimensional density estimates obtained by convolving the galaxy distribution with Gaussian kernels of dispersion 1.1 Mpc and 5.5 Mpc, respectively. We find that star-forming and quiescent galaxies form two distinct populations, as characterised by their H-alpha equivalent width, EW(Ha). The relative numbers of star-forming and quiescent galaxies varies strongly and continuously with local density. However, the distribution of EW(Ha) amongst the star-forming population is independent of environment. The fraction of star-forming galaxies shows strong sensitivity to the density on large scales, rho5.5, which is likely independent of the trend with local density, rho1.1. We use two differently-selected group catalogues to demonstrate that the correlation with galaxy density is approximately independent of group velocity dispersion, for sigma=200-1000 km/s. Even in the lowest density environments, no more than ~70 per cent of galaxies show significant H-alpha emission. Based on these results, we conclude that the present-day correlation between star formation rate and environment is a result of short-timescale mechanisms that take place preferentially at high redshift, such as starbursts induced by galaxy-galaxy interactions.
We compute the angular power spectrum C_l from 1.5 million galaxies in early SDSS data on large angular scales, l<600. The data set covers about 160 square degrees, with a characteristic depth of order 1 Gpc/h in the faintest (21<r<22) of our four magnitude bins. Cosmological interpretations of these results are presented in a companion paper by Dodelson et al (2001). The data in all four magnitude bins are consistent with a simple flat ``concordance model with nonlinear evolution and linear bias factors of order unity. Nonlinear evolution is particularly evident for the brightest galaxies. A series of tests suggest that systematic errors related to seeing, reddening, etc., are negligible, which bodes well for the sixtyfold larger sample that the SDSS is currently collecting. Uncorrelated error bars and well-behaved window functions make our measurements a convenient starting point for cosmological model fitting.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا