Do you want to publish a course? Click here

First e-VLBI observations of Cygnus X-3

87   0   0.0 ( 0 )
 Added by Valeriu Tudose
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the results of the first two 5 GHz e-VLBI observations of the X-ray binary Cygnus X-3 using the European VLBI Network. Two successful observing sessions were held, on 2006 April 20, when the system was in a quasi-quiescent state several weeks after a major flare, and on 2006 May 18, a few days after another flare. At the first epoch we detected faint emission probably associated with a fading jet, spatially separated from the X-ray binary. The second epoch in contrast reveals a bright, curved, relativistic jet more than 40 milliarcseconds in extent. In the first, and probably also second epochs, the X-ray binary core is not detected, which may indicate a temporary suppression of jet production as seen in some black hole X-ray binaries in certain X-ray states. Spatially resolved polarisation maps at the second epoch provide evidence of interaction between the ejecta and the surrounding medium. These results clearly demonstrate the importance of rapid analysis of long-baseline observations of transients, such as facilitated by e-VLBI.



rate research

Read More

We present the first INTEGRAL results on Cyg X-3 from the PV phase observations of the Cygnus region. The source was clearly detected by the JEM-X, ISGRI and SPI detectors. The INTEGRAL observations were supported by simultaneous pointed RXTE observations. Their lightcurves folded over the 4.8 hour binary period are compatible with the mean RXTE/ASM and CGRO/BATSE light curves. We fit our broad band X-ray/Gamma-ray spectra with a physical model, which represents the first such published model for Cyg X-3. The main physical processes in the source are thermal Comptonization and Compton reflection with parameters similar to those found for black-hole binaries at high Eddington rates.
The peculiar X-ray binary Cygnus X-3 has been observed on several occasions with the X/gamma-ray instruments on board INTEGRAL. We have collected data from available public and Galactic Plane Scan observations between December 2002 and December 2003 and summed them together into two broad-band spectra, representing different physical spectral states of the source. We have fitted the two spectra with models including Comptonization and Compton reflection, similar to those found for black-hole binaries at high accretion rates.
In September 2016, the microquasar Cygnus X-3 underwent a giant radio flare, which was monitored for 6 days with the Medicina Radio Astronomical Station and the Sardinia Radio Telescope. Long observations were performed in order to follow the evolution of the flare on a hourly scale, covering six frequency ranges from 1.5 GHz to 25.6 GHz. The radio emission reached a maximum of 13.2 +/- 0.7 Jy at 7.2 GHz and 10 +/- 1 Jy at 18.6 GHz. Rapid flux variations were observed at high radio frequencies at the peak of the flare, together with rapid evolution of the spectral index: alpha steepened from 0.3 to 0.6 within 5 hours. This is the first time that such fast variations are observed, giving support to the evolution from optically thick to optically thin plasmons in expansion moving outward from the core. Based on the Italian network (Noto, Medicina and SRT) and extended to the European antennas (Torun, Yebes, Onsala), VLBI observations were triggered at 22 GHz on five different occasions, four times prior to the giant flare, and once during its decay phase. Flux variations of 2-hour duration were recorded during the first session. They correspond to a mini-flare that occurred close to the core ten days before the onset of the giant flare. From the latest VLBI observation we infer that four days after the flare peak the jet emission was extended over 30 mas.
We report results from TeV gamma-ray observations of the microquasar Cygnus X-3. The observations were made with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) over a time period from 2007 June 11 to 2011 November 28. VERITAS is most sensitive to gamma rays at energies between 85 GeV to 30 TeV. The effective exposure time amounts to a total of about 44 hours, with the observations covering six distinct radio/X-ray states of the object. No significant TeV gamma-ray emission was detected in any of the states, nor with all observations combined. The lack of a positive signal, especially in the states where GeV gamma rays were detected, places constraints on TeV gamma-ray production in Cygnus X-3. We discuss the implications of the results.
We improve the method proposed by Yao emph{et al} (2003) to resolve the X-ray dust scattering halos of point sources. Using this method we re-analyze the Cygnus X-1 data observed with {it Chandra} (ObsID 1511) and derive the halo radial profile in different energy bands and the fractional halo intensity (FHI) as $I(E)=0.402times E_{{rm keV}}^{-2}$. We also apply the method to the Cygnus X-3 data ({it Chandra} ObsID 425) and derive the halo radial profile from the first order data with the {it Chandra} ACIS+HETG. It is found that the halo radial profile could be fit by the halo model MRN (Mathis, Rumpl $&$ Nordsieck, 1977) and WD01 (Weingartner $&$ Draine, 2001); the dust clouds should be located at between 1/2 to 1 of the distance to Cygnus X-1 and between 1/6 to 3/4 (from MRN model) or 1/6 to 2/3 (from WD01 model) of the distance to Cygnus X-3, respectively.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا