No Arabic abstract
We improve the method proposed by Yao emph{et al} (2003) to resolve the X-ray dust scattering halos of point sources. Using this method we re-analyze the Cygnus X-1 data observed with {it Chandra} (ObsID 1511) and derive the halo radial profile in different energy bands and the fractional halo intensity (FHI) as $I(E)=0.402times E_{{rm keV}}^{-2}$. We also apply the method to the Cygnus X-3 data ({it Chandra} ObsID 425) and derive the halo radial profile from the first order data with the {it Chandra} ACIS+HETG. It is found that the halo radial profile could be fit by the halo model MRN (Mathis, Rumpl $&$ Nordsieck, 1977) and WD01 (Weingartner $&$ Draine, 2001); the dust clouds should be located at between 1/2 to 1 of the distance to Cygnus X-1 and between 1/6 to 3/4 (from MRN model) or 1/6 to 2/3 (from WD01 model) of the distance to Cygnus X-3, respectively.
Gamma-ray observations of microquasars at high and very-high energies can provide valuable information of the acceleration processes inside the jets, the jet-environment interaction and the disk-jet coupling. Two high-mass microquasars have been deeply studied to shed light on these aspects: Cygnus X-1 and Cygnus X-3. Both systems display the canonical hard and soft X-ray spectral states of black hole transients, where the radiation is dominated by non-thermal emission from the corona and jets and by thermal emission from the disk, respectively. Here, we report on the detection of Cygnus X-1 above 60 MeV using 7.5 yr of Pass8 Fermi-LAT data, correlated with the hard X-ray state. A hint of orbital flux modulation was also found, as the source is only detected in phases around the compact object superior conjunction. We conclude that the high-energy gamma-ray emission from Cygnus X-1 is most likely associated with jets and its detection allow us to constrain the production site. Moreover, we include in the discussion the final results of a MAGIC long-term campaign on Cygnus X-1 that reaches almost 100 hr of observations at different X-ray states. On the other hand, during summer 2016, Cygnus X-3 underwent a flaring activity period in radio and high-energy gamma rays, similar to the one that led to its detection in the high-energy regime in 2009. MAGIC performed comprehensive follow-up observations for a total of about 70 hr. We discuss our results in a multi-wavelength context.
We present a detailed study of the X-ray dust scattering halo of the black hole candidate cygx1 based on two chandra HETGS observations. Using 18 different dust models, including one modified by us (dubbed XLNW), we probe the interstellar medium between us and this source. A consistent description of the cloud properties along the line of sight that describes at the same time the halo radial profile, the halo lightcurves, and the column density from source spectroscopy is best achieved with a small subset of these models. Combining the studies of the halo radial profile and the halo lightcurves, we favor a geometric distance to cygx1 of $d=1.81pm{0.09}$,kpc. Our study also shows that there is a dense cloud, which contributes $sim$50% of the dust grains along the line of sight to cygx1, located at $sim1.6$ kpc from us. The remainder of the dust along the line of sight is close to the black hole binary.
The peculiar X-ray binary Cygnus X-3 has been observed on several occasions with the X/gamma-ray instruments on board INTEGRAL. We have collected data from available public and Galactic Plane Scan observations between December 2002 and December 2003 and summed them together into two broad-band spectra, representing different physical spectral states of the source. We have fitted the two spectra with models including Comptonization and Compton reflection, similar to those found for black-hole binaries at high accretion rates.
We present the first INTEGRAL results on Cyg X-3 from the PV phase observations of the Cygnus region. The source was clearly detected by the JEM-X, ISGRI and SPI detectors. The INTEGRAL observations were supported by simultaneous pointed RXTE observations. Their lightcurves folded over the 4.8 hour binary period are compatible with the mean RXTE/ASM and CGRO/BATSE light curves. We fit our broad band X-ray/Gamma-ray spectra with a physical model, which represents the first such published model for Cyg X-3. The main physical processes in the source are thermal Comptonization and Compton reflection with parameters similar to those found for black-hole binaries at high Eddington rates.
We report results from TeV gamma-ray observations of the microquasar Cygnus X-3. The observations were made with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) over a time period from 2007 June 11 to 2011 November 28. VERITAS is most sensitive to gamma rays at energies between 85 GeV to 30 TeV. The effective exposure time amounts to a total of about 44 hours, with the observations covering six distinct radio/X-ray states of the object. No significant TeV gamma-ray emission was detected in any of the states, nor with all observations combined. The lack of a positive signal, especially in the states where GeV gamma rays were detected, places constraints on TeV gamma-ray production in Cygnus X-3. We discuss the implications of the results.