We completely classify Friedmann-Lema^{i}tre-Robertson-Walker solutions with spatial curvature $K=0,pm 1$ and equation of state $p=wrho$, according to their conformal structure, singularities and trapping horizons. We do not assume any energy conditions and allow $rho < 0$, thereby going beyond the usual well-known solutions. For each spatial curvature, there is an initial spacelike big-bang singularity for $w>-1/3$ and $rho>0$, while no big-bang singularity for $w<-1$ and $rho>0$. For $K=0$ or $-1$, $-1<w<-1/3$ and $rho>0$, there is an initial null big-bang singularity. For each spatial curvature, there is a final spacelike future big-rip singularity for $w<-1$ and $rho>0$, with null geodesics being future complete for $-5/3le w<-1$ but incomplete for $w<-5/3$. For $w=-1/3$, the expansion speed is constant. For $-1<w<-1/3$ and $K=1$, the universe contracts from infinity, then bounces and expands back to infinity. For $K=0$, the past boundary consists of timelike infinity and a regular null hypersurface for $-5/3<w<-1$, while it consists of past timelike and past null infinities for $wle -5/3$. For $w<-1$ and $K=1$, the spacetime contracts from an initial spacelike past big-rip singularity, then bounces and blows up at a final spacelike future big-rip singularity. For $w<-1$ and $K=-1$, the past boundary consists of a regular null hypersurface. The trapping horizons are timelike, null and spacelike for $win (-1,1/3)$, $win {1/3, -1}$ and $win (-infty,-1)cup (1/3,infty)$, respectively. A negative energy density ($rho <0$) is possible only for $K=-1$. In this case, for $w>-1/3$, the universe contracts from infinity, then bounces and expands to infinity; for $-1<w<-1/3$, it starts from a big-bang singularity and contracts to a big-crunch singularity; for $w<-1$, it expands from a regular null hypersurface and contracts to another regular null hypersurface.
The integral of the energy density function $mathfrak m$ of a closed Robertson-Walker (RW) spacetime with source a perfect fluid and cosmological constant $Lambda$ gives rise to an action functional on the space of scale functions of RW spacetime metrics. This paper studies closed RW spacetimes which are critical for this functional, subject to volume-preserving variations (critical RW spacetimes). A complete classification of critical RW spacetimes is given and explicit solutions in terms of Weierstrass elliptic functions and their degenerate forms are computed. The standard energy conditions (weak, dominant, and strong) as well as the cyclic property of critical RW spacetimes are discussed.
In a recent paper [arXiv:1206.4916] by T. Padmanabhan, it was argued that our universe provides an ideal setup to stress the issue that cosmic space is emergent as cosmic time progresses and that the expansion of the universe is due to the difference between the number of degrees of freedom on a holographic surface and the one in the emerged bulk. In this note following this proposal we obtain the Friedmann equation of a higher dimensional Friedmann-Robertson-Walker universe. By properly modifying the volume increase and the number of degrees of freedom on the holographic surface from the entropy formulas of black hole in the Gauss-Bonnet gravity and more general Lovelock gravity, we also get corresponding dynamical equations of the universe in those gravity theories.