Do you want to publish a course? Click here

Complete conformal classification of the Friedmann-Lemaitre-Robertson-Walker solutions with a linear equation of state

74   0   0.0 ( 0 )
 Added by Tomohiro Harada
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We completely classify Friedmann-Lema^{i}tre-Robertson-Walker solutions with spatial curvature $K=0,pm 1$ and equation of state $p=wrho$, according to their conformal structure, singularities and trapping horizons. We do not assume any energy conditions and allow $rho < 0$, thereby going beyond the usual well-known solutions. For each spatial curvature, there is an initial spacelike big-bang singularity for $w>-1/3$ and $rho>0$, while no big-bang singularity for $w<-1$ and $rho>0$. For $K=0$ or $-1$, $-1<w<-1/3$ and $rho>0$, there is an initial null big-bang singularity. For each spatial curvature, there is a final spacelike future big-rip singularity for $w<-1$ and $rho>0$, with null geodesics being future complete for $-5/3le w<-1$ but incomplete for $w<-5/3$. For $w=-1/3$, the expansion speed is constant. For $-1<w<-1/3$ and $K=1$, the universe contracts from infinity, then bounces and expands back to infinity. For $K=0$, the past boundary consists of timelike infinity and a regular null hypersurface for $-5/3<w<-1$, while it consists of past timelike and past null infinities for $wle -5/3$. For $w<-1$ and $K=1$, the spacetime contracts from an initial spacelike past big-rip singularity, then bounces and blows up at a final spacelike future big-rip singularity. For $w<-1$ and $K=-1$, the past boundary consists of a regular null hypersurface. The trapping horizons are timelike, null and spacelike for $win (-1,1/3)$, $win {1/3, -1}$ and $win (-infty,-1)cup (1/3,infty)$, respectively. A negative energy density ($rho <0$) is possible only for $K=-1$. In this case, for $w>-1/3$, the universe contracts from infinity, then bounces and expands to infinity; for $-1<w<-1/3$, it starts from a big-bang singularity and contracts to a big-crunch singularity; for $w<-1$, it expands from a regular null hypersurface and contracts to another regular null hypersurface.



rate research

Read More

A regularization procedure has been recently suggested for regularizing Big Bang singularities in Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetimes. We argue that this procedure is only appliable to one case of Big Bang singularities and does not affect other types of singularities.
In this work a series of methods are developed for understanding the Friedmann equation when it is beyond the reach of the Chebyshev theorem. First it will be demonstrated that every solution of the Friedmann equation admits a representation as a roulette such that information on the latter may be used to obtain that for the former. Next the Friedmann equation is integrated for a quadratic equation of state and for the Randall--Sundrum II universe, leading to a harvest of a rich collection of new interesting phenomena. Finally an analytic method is used to isolate the asymptotic behavior of the solutions of the Friedmann equation, when the equation of state is of an extended form which renders the integration impossible, and to establish a universal exponential growth law.
130 - M. Ibison 2007
All possible transformations from the Robertson-Walker metric to those conformal to the Lorentz-Minkowski form are derived. It is demonstrated that the commonly known family of transformations and associated conformal factors are not exhaustive and that there exists another relatively less well known family of transformations with a different conformal factor in the particular case that K = -1. Simplified conformal factors are derived for the special case of maximally-symmetric spacetimes. The full set of all possible cosmologically-compatible conformal forms is presented as a comprehensive table. A product of the analysis is the determination of the set-theoretical relationships between the maximally symmetric spacetimes, the Robertson-Walker spacetimes, and functionally more general spacetimes. The analysis is preceded by a short historical review of the application of conformal metrics to Cosmology.
219 - Rong-Gen Cai 2012
In a recent paper [arXiv:1206.4916] by T. Padmanabhan, it was argued that our universe provides an ideal setup to stress the issue that cosmic space is emergent as cosmic time progresses and that the expansion of the universe is due to the difference between the number of degrees of freedom on a holographic surface and the one in the emerged bulk. In this note following this proposal we obtain the Friedmann equation of a higher dimensional Friedmann-Robertson-Walker universe. By properly modifying the volume increase and the number of degrees of freedom on the holographic surface from the entropy formulas of black hole in the Gauss-Bonnet gravity and more general Lovelock gravity, we also get corresponding dynamical equations of the universe in those gravity theories.
83 - Karen Yagdjian 2020
The equation of the spin-$frac{1}{2}$ particles in the Friedmann-Lema^itre-Robertson-Walker spacetime is investigated. The retarded and advanced fundamental solutions to the Dirac operator and generalized Dirac operator as well as the fundamental solutions to the Cauchy problem are written in explicit form via the fundamental solution of the wave equation in the Minkowski spacetime.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا