No Arabic abstract
We present the results of broad band (3-100 keV) observations of several X-ray pulsars with the INTEGRAL and RXTE observatories. We concentrate on the luminosity and energy dependence of the pulse profile and the variations of the cyclotron line energy. In V0332+53 the line energy changes nearly linearly with the source luminosity, while in 4U0115+63 its behavior is more complicated. Strong variations of the pulse profile with the energy and source intensity were found for both of pulsars; in V0332+53 the changes of the pulse profile near the cyclotron line are especially drastic. The preliminary results obtained for Her X-1 and GX 301-2 in a high intensity state show the absence of significant pulse profile changes with the energy. Results and possible emission mechanisms are briefly discussed in terms of theoretical models of accreting pulsars.
We present results of observations of the transient X-ray pulsar V0332+53 performed during a very powerful outburst in Dec, 2004 -- Feb, 2005 with the INTEGRAL and RXTE observatories in a wide (3-100 keV) energy band. A cyclotron resonance scattering line at an energy of ~26 keV has been detected in the source spectrum together with its two higher harmonics at ~50 and ~73 keV, respectively. We show that the energy of the line is not constant but linearly changes with the source luminosity. Strong pulse profile variations, especially near the cyclotron line, are revealed for different levels of the source intensity. We discuss the obtained results in terms of the theoretical models of X-ray pulsars.
We present NuSTAR observations of Vela X-1, a persistent, yet highly variable, neutron star high-mass X-ray binary (HMXB). Two observations were taken at similar orbital phases but separated by nearly a year. They show very different 3-79 keV flux levels as well as strong variability during each observation, covering almost one order of magnitude in flux. These observations allow, for the first time ever, investigations on kilo-second time-scales of how the centroid energies of cyclotron resonant scattering features (CRSFs) depend on flux for a persistent HMXB. We find that the line energy of the harmonic CRSF is correlated with flux, as expected in the sub-critical accretion regime. We argue that Vela X-1 has a very narrow accretion column with a radius of around 0.4 km that sustains a Coulomb interaction dominated shock at the observed luminosities of Lx ~ 3x10^36 erg/s. Besides the prominent harmonic line at 55 keV the fundamental line around 25 keV is clearly detected. We find that the strengths of the two CRSFs are anti-correlated, which we explain by photon spawning. This anti-correlation is a possible explanation for the debate about the existence of the fundamental line. The ratio of the line energies is variable with time and deviates significantly from 2.0, also a possible consequence of photon spawning, which changes the shape of the line. During the second observation, Vela X-1 showed a short off-state in which the power-law softened and a cut-off was no longer measurable. It is likely that the source switched to a different accretion regime at these low mass accretion rates, explaining the drastic change in spectral shape.
X-ray spectra of accreting pulsars are generally observed to vary with their X-ray luminosity. In particular, the hardness of the X-ray continuum is found to depend on luminosity. In a few sources, the correlation between the energy of the cyclotron resonance scattering feature (CRSF) and the luminosity is clear. Different types (signs) of the correlation are believed to reflect different accretion modes. We analyse two NuSTAR observations of the transient accreting pulsar Cep X-4 during its 2014 outburst. Our analysis is focused on a detailed investigation of the dependence of the CRSF energy and of the spectral hardness on X-ray luminosity, especially on short timescales. To investigate the spectral changes as a function of luminosity within each of the two observations, we used the intrinsic variability of the source on the timescale of individual pulse cycles (tens of seconds), the so-called pulse-to-pulse variability. We find that the NuSTAR spectrum of Cep X-4 contains two CRSFs: the fundamental line at ~30 keV and its harmonic at ~55 keV. We find for the first time that the energy of the fundamental CRSF increases and the continuum becomes harder with increasing X-ray luminosity not only between the two observations, that is, on the long timescale, but also within an individual observation, on the timescale of a few tens of seconds. We investigate these dependencies in detail including their non-linearity. We discuss a possible physical interpretation of the observed behaviour in the frame of a simple one-dimensional model of the polar emitting region with a collisionless shock formed in the infalling plasma near the neutron star surface. With this model, we are able to reproduce the observed variations of the continuum hardness ratio and of the CRSF energy with luminosity.
The light curves observed from X-ray pulsars and magnetars reflect the radiation emission pattern, the geometry of the magnetic field, and the neutron star compactness. We study the statistics of X-ray pulse profiles in order to constrain the neutron star compactness and the magnetic field geometry. We collect the data for 124 X-ray pulsars, which are mainly in high-mass X-ray binary systems, and classify their pulse profiles according to the number of observed peaks seen during one spin period, dividing them into two classes, single- and double-peaked. We find that the pulsars are distributed about equally between both groups. We also compute the probabilities predicted by the theoretical models of two antipodal point-like spots that emit radiation according to the pencil-like emission patterns. These are then compared to the observed fraction of pulsars in the two classes. Assuming a blackbody emission pattern, it is possible to constrain the neutron star compactness if the magnetic dipole has arbitrary inclinations to the pulsar rotational axis. More realistic pencil-beam patterns predict that 79% of the pulsars are double-peaked independently of their compactness. The theoretical predictions can be made consistent with the data if the magnetic dipole inclination to the rotational axis has an upper limit of 40+/-4 deg. We also discuss the effect of limited sensitivity of the X-ray instruments to detect weak pulses, which lowers the number of detected double-peaked profiles and makes the theoretical predictions to be consistent with the data even if the magnetic dipole does have random inclinations. This shows that the statistics of pulse profiles does not allow us to constrain the neutron star compactness. In contrast to the previous claims by Bulik et al. (2003), the data also do not require the magnetic inclination to be confined in a narrow interval.
I review the basic observational properties of accreting millisecond pulsars that are important for understanding the physics involved in formation of their pulse profiles. I then discuss main effects responsible for shaping these profiles. Some analytical results that help to understand the results of simulations are presented. Constraints on the pulsar geometry and the neutron star equation of state obtained from the analysis of the pulse profiles are discussed.