Do you want to publish a course? Click here

The CFHTLS Strong Lensing Legacy Survey: I. Survey overview and T0002 release sample

90   0   0.0 ( 0 )
 Added by Remi A. Cabanac
 Publication date 2006
  fields Physics
and research's language is English
 Authors R.A. Cabanac




Ask ChatGPT about the research

AIMS: We present data from the CFHTLS Strong Lensing Legacy Survey (SL2S). Due to the unsurpassed combined depth, area and image quality of the Canada-France-Hawaii Legacy Survey it is becoming possible to uncover a large, statistically well-defined sample of strong gravitational lenses which spans the dark halo mass spectrum predicted by the concordance model from galaxy to cluster haloes. METHODS: We describe the development of several automated procedures to find strong lenses of various mass regimes in CFHTLS images. RESULTS: The preliminary sample of about 40 strong lensing candidates discovered in the CFHTLS T0002 release, covering an effective field of view of 28 deg$^2$ is presented. These strong lensing systems were discovered using an automated search and consist mainly of gravitational arc systems with splitting angles between 2 and 15 arcsec. This sample shows for the first time that it is possible to uncover a large population of strong lenses from galaxy groups with typical halo masses of about $10^{13}h^{-1}M_odot$. We discuss the future evolution of the SL2S project and its main scientific aims for the next 3 years, in particular our observational strategy to extract the hundreds of gravitational rings also present in these fields.



rate research

Read More

We present the Strong Lensing Legacy Survey - ARCS (SARCS) sample compiled from the final T0006 data release of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) covering a total non-overlapping area of 159 sq.deg. We adopt a semi-automatic method to find gravitational arcs in the survey that makes use of an arc-finding algorithm. The candidate list is pruned by visual inspection and ranking to form the SARCS sample. This list also includes some serendipitously discovered lens candidates. The SARCS sample consists of 127 lens candidates which span arc radii~2-18 within the unmasked area of ~ 150 sq. deg. Within the sample, 54 systems are promising lenses amongst which, we find 12 giant arcs and 2 radial arc candidates. From our sample, we detect a systematic alignment of giant arcs with the ellipticity of the baryonic component of the lens in concordance with previous studies. The lens redshift distribution corresponding to both the giant arcs and all arcs, estimated from photometric catalogs, peaks at z~0.6. Owing to the large area and depth of the CFHTLS, we find the largest lens sample probing group-scales for the first time. We compare the observed image separation distribution (ISD) of our arcs with theoretical models. A two-component density profile for the lenses which accounts for both the central galaxy and dark matter component is required by the data to explain the observed ISD. Unfortunately, current levels of uncertainties and degeneracies accommodate models both with and without adiabatic contraction. We also show the effects of changing parameters of the model that predict the ISD and that a larger lens sample might constrain relations such as the concentration-mass relation, mass-luminosity relation and slope of the luminosity function. (abridged)
We give an overview of the Grism Lens Amplified Survey from Space (GLASS), a large Hubble Space Telescope program aimed at obtaining grism spectroscopy of the fields of ten massive clusters of galaxies at redshift z=0.308-0.686, including the Hubble Frontier Fields (HFF). The Wide Field Camera 3 yields near infrared spectra of the cluster cores, covering the wavelength range 0.81-1.69mum through grisms G102 and G141, while the Advanced Camera for Surveys in parallel mode provides G800L spectra of the infall regions of the clusters. The WFC3 spectra are taken at two almost orthogonal position angles in order to minimize the effects of confusion. After summarizing the scientific drivers of GLASS, we describe the sample selection as well as the observing strategy and data processing pipeline. We then utilize MACSJ0717.5+3745, a HFF cluster and the first one observed by GLASS, to illustrate the data quality and the high-level data products. Each spectrum brighter than H_AB=23 is visually inspected by at least two co-authors and a redshift is measured when sufficient information is present in the spectra. Furthermore, we conducted a thorough search for emission lines through all the GLASS WFC3 spectra with the aim of measuring redshifts for sources with continuum fainter than H_AB=23. We provide a catalog of 139 emission-line based spectroscopic redshifts for extragalactic sources, including three new redshifts of multiple image systems (one probable, two tentative). In addition to the data itself we also release software tools that are helpful to navigate the data.
We present an overview of the CMZoom survey and its first data release. CMZoom is the first blind, high-resolution survey of the Central Molecular Zone (CMZ; the inner 500 pc of the Milky Way) at wavelengths sensitive to the pre-cursors of high-mass stars. CMZoom is a 500-hour Large Program on the Submillimeter Array (SMA) that mapped at 1.3 mm all of the gas and dust in the CMZ above a molecular hydrogen column density of 10^23 cm^-2 at a resolution of ~3 (0.1 pc). In this paper, we focus on the 1.3 mm dust continuum and its data release, but also describe CMZoom spectral line data which will be released in a forthcoming publication. While CMZoom detected many regions with rich and complex substructure, its key result is an overall deficit in compact substructures on 0.1 - 2 pc scales (the compact dense gas fraction: CDGF). In comparison with clouds in the Galactic disk, the CDGF in the CMZ is substantially lower, despite having much higher average column densities. CMZ clouds with high CDGFs are well-known sites of active star formation. The inability of most gas in the CMZ to form compact substructures is likely responsible for the dearth of star formation in the CMZ, surprising considering its high density. The factors responsible for the low CDGF are not yet understood but are plausibly due to the extreme environment of the CMZ, having far-reaching ramifications for our understanding of the star formation process across the cosmos.
376 - E. Egami , M. Rex , T. D. Rawle 2010
The Herschel Lensing Survey (HLS) will conduct deep PACS and SPIRE imaging of ~40 massive clusters of galaxies. The strong gravitational lensing power of these clusters will enable us to penetrate through the confusion noise, which sets the ultimate limit on our ability to probe the Universe with Herschel. Here, we present an overview of our survey and a summary of the major results from our Science Demonstration Phase (SDP) observations of the Bullet Cluster (z=0.297). The SDP data are rich, allowing us to study not only the background high-redshift galaxies (e.g., strongly lensed and distorted galaxies at z=2.8 and 3.2) but also the properties of cluster-member galaxies. Our preliminary analysis shows a great diversity of far-infrared/submillimeter spectral energy distributions (SEDs), indicating that we have much to learn with Herschel about the properties of galaxy SEDs. We have also detected the Sunyaev-Zeldovich (SZ) effect increment with the SPIRE data. The success of this SDP program demonstrates the great potential of the Herschel Lensing Survey to produce exciting results in a variety of science areas.
We present a survey of the mass surface-density of spiral disks, motivated by outstanding uncertainties in rotation-curve decompositions. Our method exploits integral-field spectroscopy to measure stellar and gas kinematics in nearly face-on galaxies sampled at 515, 660, and 860 nm, using the custom-built SparsePak and PPak instruments. A two-tiered sample, selected from the UGC, includes 146 nearly face-on galaxies, with B<14.7 and disk scale-lengths between 10 and 20 arcsec, for which we have obtained H-alpha velocity-fields; and a representative 46-galaxy subset for which we have obtained stellar velocities and velocity dispersions. Based on re-calibration of extant photometric and spectroscopic data, we show these galaxies span factors of 100 in L(K) (0.03 < L/L(K)* < 3), 8 in L(B)/L(K), 10 in R-band disk central surface-brightness, with distances between 15 and 200 Mpc. The survey is augmented by 4-70 micron Spitzer IRAC and MIPS photometry, ground-based UBVRIJHK photometry, and HI aperture-synthesis imaging. We outline the spectroscopic analysis protocol for deriving precise and accurate line-of-sight stellar velocity dispersions. Our key measurement is the dynamical disk-mass surface-density. Star-formation rates and kinematic and photometric regularity of galaxy disks are also central products of the study. The survey is designed to yield random and systematic errors small enough (i) to confirm or disprove the maximum-disk hypothesis for intermediate-type disk galaxies, (ii) to provide an absolute calibration of the stellar mass-to-light ratio well below uncertainties in present-day stellar-population synthesis models, and (iii) to make significant progress in defining the shape of dark halos in the inner regions of disk galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا