Do you want to publish a course? Click here

The DiskMass Survey. I. Overview

521   0   0.0 ( 0 )
 Added by Matthew Bershady
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a survey of the mass surface-density of spiral disks, motivated by outstanding uncertainties in rotation-curve decompositions. Our method exploits integral-field spectroscopy to measure stellar and gas kinematics in nearly face-on galaxies sampled at 515, 660, and 860 nm, using the custom-built SparsePak and PPak instruments. A two-tiered sample, selected from the UGC, includes 146 nearly face-on galaxies, with B<14.7 and disk scale-lengths between 10 and 20 arcsec, for which we have obtained H-alpha velocity-fields; and a representative 46-galaxy subset for which we have obtained stellar velocities and velocity dispersions. Based on re-calibration of extant photometric and spectroscopic data, we show these galaxies span factors of 100 in L(K) (0.03 < L/L(K)* < 3), 8 in L(B)/L(K), 10 in R-band disk central surface-brightness, with distances between 15 and 200 Mpc. The survey is augmented by 4-70 micron Spitzer IRAC and MIPS photometry, ground-based UBVRIJHK photometry, and HI aperture-synthesis imaging. We outline the spectroscopic analysis protocol for deriving precise and accurate line-of-sight stellar velocity dispersions. Our key measurement is the dynamical disk-mass surface-density. Star-formation rates and kinematic and photometric regularity of galaxy disks are also central products of the study. The survey is designed to yield random and systematic errors small enough (i) to confirm or disprove the maximum-disk hypothesis for intermediate-type disk galaxies, (ii) to provide an absolute calibration of the stellar mass-to-light ratio well below uncertainties in present-day stellar-population synthesis models, and (iii) to make significant progress in defining the shape of dark halos in the inner regions of disk galaxies.



rate research

Read More

We present a performance analysis of the DiskMass Survey. The survey uses collisionless tracers in the form of disk stars to measure the surface-density of spiral disks, to provide an absolute calibration of the stellar mass-to-light ratio, and to yield robust estimates of the dark-matter halo density profile in the inner regions of galaxies. We find a disk inclination range of 25-35 degrees is optimal for our measurements, consistent with our survey design to select nearly face-on galaxies. Uncertainties in disk scale-heights are significant, but can be estimated from radial scale-lengths to 25% now, and more precisely in the future. We detail the spectroscopic analysis used to derive line-of-sight velocity dispersions, precise at low surface-brightness, and accurate in the presence of composite stellar populations. Our methods take full advantage of large-grasp integral-field spectroscopy and an extensive library of observed stars. We show that the baryon-to-total mass fraction (F_b) is not a well-defined observational quantity because it is coupled to the halo mass model. This remains true even when the disk mass is known and spatially-extended rotation curves are available. In contrast, the fraction of the rotation speed supplied by the disk at 2.2 scale lengths (disk maximality) is a robust observational indicator of the baryonic disk contribution to the potential. We construct the error-budget for the key quantities: dynamical disk mass surface-density, disk stellar mass-to-light ratio, and disk maximality (V_disk / V_circular). Random and systematic errors in these quantities for individual galaxies will be ~25%, while survey precision for sample quartiles are reduced to 10%, largely devoid of systematic errors outside of distance uncertainties.
SURFSUP is a joint Spitzer and HST Exploration Science program using 10 galaxy clusters as cosmic telescopes to study z >~ 7 galaxies at intrinsically lower luminosities, enabled by gravitational lensing, than blank field surveys of the same exposure time. Our main goal is to measure stellar masses and ages of these galaxies, which are the most likely sources of the ionizing photons that drive reionization. Accurate knowledge of the star formation density and star formation history at this epoch is necessary to determine whether these galaxies indeed reionized the universe. Determination of the stellar masses and ages requires measuring rest frame optical light, which only Spitzer can probe for sources at z >~ 7, for a large enough sample of typical galaxies. Our program consists of 550 hours of Spitzer/IRAC imaging covering 10 galaxy clusters with very well-known mass distributions, making them extremely precise cosmic telescopes. We combine our data with archival observations to obtain mosaics with ~30 hours exposure time in both 3.6$mu$m and 4.5$mu$m in the central 4 arcmin x 4 arcmin field and ~15 hours in the flanking fields. This results in 3-$sigma$ sensitivity limits of ~26.6 and ~26.2AB magnitudes for the central field in the IRAC 3.6 and 4.5$mu$m bands, respectively. To illustrate the survey strategy and characteristics we introduce the sample, present the details of the data reduction and demonstrate that these data are sufficient for in-depth studies of z >~ 7 sources (using a z=9.5 galaxy behind MACSJ1149.5+2223 as an example). For the first cluster of the survey (the Bullet Cluster) we have released all high-level data mosaics and IRAC empirical PSF models. In the future we plan to release these data products for the entire survey.
115 - Luis C. Ho 2011
The Carnegie-Irvine Galaxy Survey (CGS) is a long-term program to investigate the photometric and spectroscopic properties of a statistically complete sample of 605 bright (B_T < 12.9 mag), southern (Dec. < 0) galaxies using the facilities at Las Campanas Observatory. This paper, the first in a series, outlines the scientific motivation of CGS, defines the sample, and describes the technical aspects of the optical broadband (BVRI) imaging component of the survey, including details of the observing program, data reduction procedures, and calibration strategy. The overall quality of the images is quite high, in terms of resolution (median seeing 1), field of view (8.9 X 8.9), and depth (median limiting surface brightness 27.5, 26.9, 26.4, and 25.3 mag/arcsec2 in the B, V, R, and I bands, respectively). We prepare a digital image atlas showing several different renditions of the data, including three-color composites, star-cleaned images, stacked images to enhance faint features, structure maps to highlight small-scale features, and color index maps suitable for studying the spatial variation of stellar content and dust. In anticipation of upcoming science analyses, we tabulate an extensive set of global properties for the galaxy sample. These include optical isophotal and photometric parameters derived from CGS itself, as well as published information on multiwavelength (ultraviolet, U-band, near-infrared, far-infrared) photometry, internal kinematics (central stellar velocity dispersions, disk rotational velocities), environment (distance to nearest neighbor, tidal parameter, group or cluster membership), and H I content. The digital images and science-level data products will be made publicly accessible to the community.
375 - E. Egami , M. Rex , T. D. Rawle 2010
The Herschel Lensing Survey (HLS) will conduct deep PACS and SPIRE imaging of ~40 massive clusters of galaxies. The strong gravitational lensing power of these clusters will enable us to penetrate through the confusion noise, which sets the ultimate limit on our ability to probe the Universe with Herschel. Here, we present an overview of our survey and a summary of the major results from our Science Demonstration Phase (SDP) observations of the Bullet Cluster (z=0.297). The SDP data are rich, allowing us to study not only the background high-redshift galaxies (e.g., strongly lensed and distorted galaxies at z=2.8 and 3.2) but also the properties of cluster-member galaxies. Our preliminary analysis shows a great diversity of far-infrared/submillimeter spectral energy distributions (SEDs), indicating that we have much to learn with Herschel about the properties of galaxy SEDs. We have also detected the Sunyaev-Zeldovich (SZ) effect increment with the SPIRE data. The success of this SDP program demonstrates the great potential of the Herschel Lensing Survey to produce exciting results in a variety of science areas.
FastSound is a galaxy redshift survey using the near-infrared Fiber Multi-Object Spectrograph (FMOS) mounted on the Subaru Telescope, targeting H$alpha$ emitters at $z sim 1.18$--$1.54$ down to the sensitivity limit of H$alpha$ flux $sim 2 times 10^{-16} rm erg cm^{-2} s^{-1}$. The primary goal of the survey is to detect redshift space distortions (RSD), to test General Relativity by measuring the growth rate of large scale structure and to constrain modified gravity models for the origin of the accelerated expansion of the universe. The target galaxies were selected based on photometric redshifts and H$alpha$ flux estimates calculated by fitting spectral energy distribution (SED) models to the five optical magnitudes of the Canada France Hawaii Telescope Legacy Survey (CFHTLS) Wide catalog. The survey started in March 2012, and all the observations were completed in July 2014. In total, we achieved $121$ pointings of FMOS (each pointing has a $30$ arcmin diameter circular footprint) covering $20.6$ deg$^2$ by tiling the four fields of the CFHTLS Wide in a hexagonal pattern. Emission lines were detected from $sim 4,000$ star forming galaxies by an automatic line detection algorithm applied to 2D spectral images. This is the first in a series of papers based on FastSound data, and we describe the details of the survey design, target selection, observations, data reduction, and emission line detections.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا