No Arabic abstract
We report on the first results of an imaging survey to detect strong gravitational lensing targeting the richest clusters selected from the photometric data of the Sloan Digital Sky Survey (SDSS) with follow-up deep imaging observations from the Wisconsin Indiana Yale NOAO (WIYN) 3.5m telescope and the University of Hawaii 88-inch telescope (UH88). The clusters are selected from an area of 8000 deg^2 using the Red Cluster Sequence technique and span the redshift range 0.1 < z < 0.6, corresponding to a comoving cosmological volume of ~ 2 Gpc^3. Our imaging survey thus targets a volume more than an order of magnitude larger than any previous search. A total of 240 clusters were imaged of which 141 had sub-arcsecond image quality. Our survey has uncovered16 new lensing clusters with definite giant arcs, an additional 12 systems for which the lensing interpretation is very likely, and 9 possible lenses which contain shorter arclets or candidate arcs which are less certain and will require further observations to confirm their lensing origin. The number of new cluster lenses detected in this survey is likely > 30. Among these new systems are several of the most dramatic examples of strong gravitational lensing ever discovered with multiple bright arcs at large angular separation. These will likely become poster-child gravitational lenses similar to Abell 1689 and CL0024+1654. The new lenses discovered in this survey will enable future sysetmatic studies of the statistics of strong lensing and its implications for cosmology and our structure formation paradigm.
We present strong gravitational lensing models for 37 galaxy clusters from the SDSS Giant Arcs Survey. We combine data from multi-band Hubble Space Telescope WFC3imaging, with ground-based imaging and spectroscopy from Magellan, Gemini, APO, and MMT, in order to detect and spectroscopically confirm new multiply-lensed background sources behind the clusters. We report spectroscopic or photometric redshifts of sources in these fields, including cluster galaxies and background sources. Based on all available lensing evidence, we construct and present strong lensing mass models for these galaxy clusters.
We report the discovery of a unique gravitational lens system, SDSSJ2222+2745, producing five spectroscopically confirmed images of a z_s=2.82 quasar lensed by a foreground galaxy cluster at z_l=0.49. We also present photometric and spectroscopic evidence for a sixth lensed image of the same quasar. The maximum separation between the quasar images is 15.1. Both the large image separations and the high image multiplicity of the lensed quasar are in themselves exceptionally rare, and observing the combination of these two factors is an exceptionally unlikely occurrence in present datasets. This is only the third known case of a quasar lensed by a cluster, and the only one with six images. The lens system was discovered in the course of the Sloan Giant Arcs Survey, in which we identify candidate lenses in the Sloan Digital Sky Survey and target these for follow up and verification with the 2.56m Nordic Optical Telescope. Multi-band photometry obtained over multiple epochs from September 2011 to September 2012 reveal significant variability at the ~10-30% level in some of the quasar images, indicating that measurements of the relative time delay between quasar images will be feasible. In this lens system we also identify a bright (g = 21.5) giant arc corresponding to a strongly lensed background galaxy at z_s=2.30. We fit parametric models of the lens system, constrained by the redshift and positions of the quasar images and the redshift and position of the giant arc. The predicted time delays between different pairs of quasar images range from ~100 days to ~6 years.
Artists, using an empirical knowledge, manage to generate and play with giant soap films and bubbles. Until now, scientific studies of soap films generated at a controlled velocity and without any feeding from the top, studied films of a few square centimeters. The present work aims to present a new setup to generate and characterize giant soap films (2~m $times$ 0.7~m). Our setup is enclosed in a humidity-controlled box of 2.2~m high, 1~m long and 0.75~m large. Soap films are entrained by a fishing line withdrawn out of a bubbling solution at various velocities. We measure the maximum height of the generated soap films, as well as their lifetime, thanks to an automatic detection. This is allowed by light-sensitive resistors collecting the light reflected on the soap films and ensures robust statistical measurements. In the meantime, thickness measurements are performed with a UV-VIS-spectrometer, allowing us to map the soap films thickness over time.
We report the discovery of seven new, very bright gravitational lens systems from our ongoing gravitational lens search, the Sloan Bright Arcs Survey (SBAS). Two of the systems are confirmed to have high source redshifts z=2.19 and z=2.94. Three other systems lie at intermediate redshift with z=1.33,1.82,1.93 and two systems are at low redshift z=0.66,0.86. The lensed source galaxies in all of these systems are bright, with i-band magnitudes ranging from 19.73-22.06. We present the spectrum of each of the source galaxies in these systems along with estimates of the Einstein radius for each system. The foreground lens in most systems is identified by a red sequence based cluster finder as a galaxy group; one system is identified as a moderately rich cluster. In total the SBAS has now discovered 19 strong lens systems in the SDSS imaging data, 8 of which are among the highest surface brightness zsimeq2-3 galaxies known.
We use high-resolution N-body simulations to study the galaxy-cluster cross-sections and the abundance of giant arcs in the $Lambda$CDM model. Clusters are selected from the simulations using the friends-of-friends method, and their cross-sections for forming giant arcs are analyzed. The background sources are assumed to follow a uniform ellipticity distribution from 0 to 0.5 and to have an area identical to a circular source with diameter $1arcsec$. We find that the optical depth scales as the source redshift approximately as $tau_{1} = 2.25 times 10^{-6}/[1+(zs/3.14)^{-3.42}]$ ($0.6<zs<7$). The amplitude is about 50% higher for an effective source diameter of $0.5arcsec$. The optimal lens redshift for giant arcs with the length-to-width ratio ($L/W$) larger than 10 increases from 0.3 for $zs=1$, to 0.5 for $zs=2$, and to 0.7-0.8 for $zs>3$. The optical depth is sensitive to the source redshift, in qualitative agreement with Wambsganss et al. (2004). However, our overall optical depth appears to be only $sim$ 10% to 70% of those from previous studies. The differences can be mostly explained by different power spectrum normalizations ($sigma_8$) used and different ways of determining the $L/W$ ratio. Finite source size and ellipticity have modest effects on the optical depth. We also found that the number of highly magnified (with magnification $|mu|>10$) and ``undistorted images (with $L/W<3$) is comparable to the number of giant arcs with $|mu|>10$ and $L/W>10$. We conclude that our predicted rate of giant arcs may be lower than the observed rate, although the precise `discrepancy is still unclear due to uncertainties both in theory and observations.