No Arabic abstract
We report the discovery of seven new, very bright gravitational lens systems from our ongoing gravitational lens search, the Sloan Bright Arcs Survey (SBAS). Two of the systems are confirmed to have high source redshifts z=2.19 and z=2.94. Three other systems lie at intermediate redshift with z=1.33,1.82,1.93 and two systems are at low redshift z=0.66,0.86. The lensed source galaxies in all of these systems are bright, with i-band magnitudes ranging from 19.73-22.06. We present the spectrum of each of the source galaxies in these systems along with estimates of the Einstein radius for each system. The foreground lens in most systems is identified by a red sequence based cluster finder as a galaxy group; one system is identified as a moderately rich cluster. In total the SBAS has now discovered 19 strong lens systems in the SDSS imaging data, 8 of which are among the highest surface brightness zsimeq2-3 galaxies known.
We present new results of our program to systematically search for strongly lensed galaxies in the Sloan Digital Sky Survey (SDSS) imaging data. In this study six strong lens systems are presented which we have confirmed with follow-up spectroscopy and imaging using the 3.5m telescope at the Apache Point Observatory. Preliminary mass models indicate that the lenses are group-scale systems with velocity dispersions ranging from 466-878 km s^{-1} at z=0.17-0.45 which are strongly lensing source galaxies at z=0.4-1.4. Galaxy groups are a relatively new mass scale just beginning to be probed with strong lensing. Our sample of lenses roughly doubles the confirmed number of group-scale lenses in the SDSS and complements ongoing strong lens searches in other imaging surveys such as the CFHTLS (Cabanac et al 2007). As our arcs were discovered in the SDSS imaging data they are all bright ($rlesssim22$), making them ideally suited for detailed follow-up studies.
We present the discovery of 3 quasar lenses in the Sloan Digital Sky Survey (SDSS), selected using two novel photometry-based selection techniques. The J0941+0518 system, with two point sources separated by 5.46 on either side of a galaxy, has source and lens redshifts $z_s = 1.54$ and $z_l = 0.343$. The AO-assisted images of J2211+1929 show two point sources separated by 1.04, corresponding to the same quasar at $z_s = 1.07,$ besides the lens galaxy and Einstein ring. Images of J2257+2349 show two point sources separated by 1.67 on either side of an E/S0 galaxy. The extracted spectra show two images of the same quasar at redshift $z_s = 2.10$. In total, the two selection techniques identified 309 lens candidates, including 47 known lenses, and 6 previously ruled out candidates. 55 of the remaining candidates were observed using NIRC2 and ESI at Keck Observatory, EFOSC2 at the ESO-NTT (La Silla), and SAM and the Goodman spectrograph at SOAR. Of the candidates observed, 3 were confirmed as lenses, 36 were ruled out, and 16 remain inconclusive. Taking into account that we recovered known lenses, this gives us a success rate of at least 50/309 (16%). This initial campaign demonstrates the power of purely photometric selection techniques in finding lensed quasars. Developing and refining these techniques is essential for efficient identification of these rare lenses in ongoing and future photometric surveys.
We have exploited the new, deep, near-infrared UltraVISTA imaging of the COSMOS field, in tandem with deep optical and mid-infrared imaging, to conduct a new search for luminous galaxies at redshifts z ~ 7. The unique multi-wavelength dataset provided by VISTA, CFHT, Subaru, HST and Spitzer over a common area of 1 deg^2 has allowed us to select galaxy candidates at z > 6.5 by searching first for Y+J-detected (< 25 AB mag) objects which are undetected in the CFHT+HST optical data. This sample was then refined using a photometric redshift fitting code, enabling the rejection of lower-redshift galaxy contaminants and cool galactic M,L,T dwarf stars.The final result of this process is a small sample of (at most) ten credible galaxy candidates at z > 6.5 which we present in this paper. The first four of these appear to be robust galaxies at z > 6.5, and fitting to their stacked SED yields z = 6.98+-0.05 with a stellar mass M* = 5x10^9 Msun, and rest-frame UV spectral slope beta = -2.0+-0.2. The next three are also good candidates for z > 6.5 galaxies, but the possibility that they are low-redshift galaxies or dwarf stars cannot be excluded. Our final subset of three additional candidates is afflicted not only by potential dwarf-star contamination, but also contains objects likely to lie at redshifts just below z = 6.5. We show that the three even-brighter z > 7 galaxy candidates reported in the COSMOS field by Capak et al. (2011) in fact all lie at z ~ 1.5-3.5. Consequently the new z ~ 7 galaxies reported here are the first credible z ~ 7 Lyman-break galaxies discovered in the COSMOS field and, as the most UV-luminous discovered to date at these redshifts, are prime targets for deep follow-up spectroscopy. We explore their physical properties, and briefly consider the implications of their inferred number density for the form of the galaxy luminosity function at z = 7.
We describe ten strong lensing galaxy clusters of redshift 0.26-0.56 that were found in the Sloan Digital Sky Survey. We present measurements of richness, mass and velocity dispersion for the clusters. We find that in order to use the mass-richness relation from Johnston et al. (2007), which was established at mean redshift of 0.25, it is necessary to scale measured richness values up by 1.47. We also present measurements of Einstein radius, mass and velocity dispersion for the lensing systems. The Einstein radii are all relatively small, between 5.4-13 arcseconds. Finally we consider if there is evidence that our clusters are more concentrated than standard cosmology would predict. We find that six of our clusters do not show evidence of overconcentration, while four of our clusters do. We note a correlation between overconcentration and mass, as the four clusters showing evidence of overconcentration are all lower-mass clusters.
Using HST and Spitzer IRAC imaging, we report the discovery of a very bright strongly lensed Lyman break galaxy (LBG) candidate at z~7.6 in the field of the massive galaxy cluster Abell 1689. The galaxy candidate, which we refer to as A1689-zD1, shows a strong z-J break of at least 2.2 mag and is completely undetected (<1 sigma) in HST/ACS g, r, i, and z-band data. These properties, combined with the very blue J-H and H-[4.5] colors, are exactly the properties of an z~7.6 LBG and can only be reasonably fit by a star-forming galaxy at z=7.6 +/- 0.4. Attempts to reproduce these properties with a model galaxy at z<4 yield particularly poor fits. A1689-zD1 has an observed (lensed) magnitude of 24.7 AB (8 sigma) in the NICMOS H band and is ~1.3 mag brighter than the brightest-known z-dropout galaxy. When corrected for the cluster magnification of 9.3 at z~7.6, the candidate has an intrinsic magnitude of H=27.1 AB, or about an L* galaxy at z~7.6. The source-plane deprojection shows that the star formation is occurring in compact knots of size ~<300 pc. The best-fit stellar population synthesis models yield a median redshift of 7.6, stellar masses (1.6-3.9) x 10^9 M_sun, stellar ages 45-320 Myr, star-formation rates ~<7.6 M_sun/yr, and low reddening with A_V <= 0.3. These properties are generally similar to those of LBGs found at z~5-6. The inferred stellar ages suggest a formation redshift of z~8-10 (t~<0.63 Gyr). A1689-zD1 is the brightest observed, highly reliable z>7.0 galaxy candidate found to date.