Do you want to publish a course? Click here

Deep XMM and Chandra observations of ClJ1226.9+3332: A detailed X-ray mass analysis of a z=0.89 galaxy cluster

83   0   0.0 ( 0 )
 Added by Ben Maughan
 Publication date 2006
  fields Physics
and research's language is English
 Authors B. J. Maughan




Ask ChatGPT about the research

Deep XMM and Chandra observations of ClJ1226.9+3332 at z=0.89 have enabled the most detailed X-ray mass analysis of any such high-redshift galaxy cluster. The XMM temperature profile of the system shows no sign of central cooling, with a hot core and a radially declining profile. A temperature map shows asymmetry with a hot region that appears to be associated with a subclump of galaxies at the cluster redshift, but is not visible in the X-ray surface brightness. This is likely to be result of a merger event in the cluster, but does not appear to significantly affect the overall temperature profile. The XMM temperature profile, and combined Chandra and XMM emissivity profile allowed precise measurements of the global properties of ClJ1226.9+3332; we find kT=10.4+/-0.6keV, Z=0.16+/-0.05Zsol, and M=5.2^{+1.0}_{-0.8}x10^{14}Msol. We obtain profiles of the metallicity, entropy, cooling time and gas fraction, and find a high concentration parameter for the total density profile of the system. The global properties are compared with the local LT and MT relations, and we are able to make the first observational test of the predicted evolution of the YM relation. We find that departures from these scaling relations are most likely caused by an underestimate of the total mass by ~30% in the X-ray hydrostatic mass analysis due to the apparent recent or ongoing merger activity.



rate research

Read More

95 - B. J. Maughan 2004
A detailed X-ray analysis of an XMM-Newton observation of the high-redshift (z=0.89) galaxy cluster ClJ1226.9+3332 is presented. The X-ray temperature is found to be 11.5{+1.1}{-0.9}keV, the highest X-ray temperature of any cluster at z>0.6. In contrast to MS1054-0321, the only other very hot cluster currently known at z>0.8, ClJ1226.9+3332 features a relaxed X-ray morphology, and its high overall gas temperature is not caused by one or several hot spots. The system thus constitutes a unique example of a high redshift, high temperature, relaxed cluster, for which the usual hydrostatic equilibrium assumption, and the X-ray mass is most reliable. A temperature profile is constructed (for the first time at this redshift) and is consistent with the cluster being isothermal out to 45% of the virial radius. Within the virial radius (corresponding to a measured overdensity of a factor of 200), a total mass of (1.4+/-0.5)*10^15 M_solar is derived, with a gas mass fraction of 12+/-5%. The bolometric X-ray luminosity is (5.3+/-0.2)*10^45 erg/s. The probabilities of finding a cluster of this mass within the volume of the discovery X-ray survey are 8*10^{-5} for Omega_M=1 and 0.64 for Omega_M=0.3, making Omega_M=1 highly unlikely. The entropy profile suggests that entropy evolution is being observed. The metal abundance (of Z=0.33{+0.14}{-0.10} Z_solar), gas mass fraction, and gas distribution are consistent with those of local clusters; thus the bulk of the metals were in place by z=0.89.
(Abridged) The colour-magnitude relations of one of the most massive, high redshift clusters of galaxies known have been studied. Photometry has been measured in the V, R, I, z, F606W, F814W, J and K bands to a depth of K*+2.5 and spectroscopy confirms 27 K band selected cluster members. The V-K colours are equivalent to a rest-frame colour of ~2700A-J, and provide a very sensitive measure of star-formation activity. HST ACS imaging has been used to morphologically classify the galaxies. The cluster has a low early-type fraction compared to nearby clusters, with only 33% of the cluster members having types E or S0. The early-type member galaxies form a clear red-sequence in all colours. The scatter and slope of the relations show no evolution compared to the equivalent Coma cluster relations, suggesting the stellar populations are already very old. The normalisation of the relations has been compared to models based on synthetic stellar populations, and are most consistent with stellar populations forming at z>3. Some late-type galaxies were found to lie on the red-sequence, suggesting that they have very similar stellar populations to the early-types. These results present a picture of a cluster in which the early-type galaxies are all old, but in which there must be future morphological transformation of galaxies to match the early-type fraction of nearby clusters. In order to preserve the tight colour-magnitude relation of early-types seen in nearby clusters, the late-type galaxies must transform their colours, through the cessation of star-formation, before the morphological transformation occurs. Such evolution is observed in the late-types lying on the colour-magnitude relation.
140 - M.J. Jee , J.A. Tyson 2008
We present a weak-lensing analysis of the galaxy cluster CL J1226+3332 at z=0.89 using Hubble Space Telescope Advanced Camera for Surveys images. The cluster is the hottest (>10 keV), most X-ray luminous system at z>0.6 known to date. The relaxed X-ray morphology, as well as its high temperature, is unusual at such a high redshift. Our mass reconstruction shows that on a large scale the dark matter distribution is consistent with a relaxed system with no significant substructures. However, on a small scale the cluster core is resolved into two mass clumps highly correlated with the cluster galaxy distribution. The dominant mass clump lies close to the brightest cluster galaxy whereas the other less massive clump is located ~40 (~310 kpc) to the southwest. Although this secondary mass clump does not show an excess in the X-ray surface brightness, the gas temperature of the region is much higher (12~18 keV) than those of the rest. We propose a scenario in which the less massive system has already passed through the main cluster and the X-ray gas has been stripped during this passage. The elongation of the X-ray peak toward the southwestern mass clump is also supportive of this possibility. We measure significant tangential shears out to the field boundary (~1.5 Mpc), which are well described by an Navarro-Frenk-White profile with a concentration parameter of c200=2.7+-0.3 and a scale length of rs=78+-19 (~600 kpc) with chi^2/d.o.f=1.11. Within the spherical volume r200=1.6 Mpc, the total mass of the cluster becomes M(r<r200)=(1.4+-0.2) x 10^15 solar mass. Our weak-lensing analysis confirms that CL1226+3332 is indeed the most massive cluster known to date at z>0.6.
We present an analysis of deep XMM-Newton and Chandra observations of the z=1.05 galaxy cluster XLSSJ022403.9-041328 (hereafter XLSSC 029), detected in the XMM-Newton large scale structure survey. Density and temperature profiles of the X-ray emitting gas were used to perform a hydrostatic mass analysis of the system. This allowed us to measure the total mass and gas fraction in the cluster and define overdensity radii R500 and R2500. The global properties of XLSSC 029 were measured within these radii and compared with those of the local population. The gas mass fraction was found to be consistent with local clusters. The mean metal abundance was 0.18 +0.17 -0.15 Zsol, with the cluster core regions excluded, consistent with the predicted and observed evolution. The properties of XLSSC 029 were then used to investigate the position of the cluster on the M-kT, YX-M, and LX-M scaling relations. In all cases the observed properties of XLSSC 029 agreed well with the simple self-similar evolution of the scaling relations. This is the first test of the evolution of these relations at z > 1 and supports the use of the scaling relations in cosmological studies with distant galaxy clusters.
We present the X-ray point source population of NGC 7457 based on 124 ks of Chandra observations. Previous deep Chandra observations of low mass X-ray binaries (LMXBs) in early-type galaxies have typically targeted the large populations of massive galaxies. NGC 7457 is a nearby, early-type galaxy with a stellar luminosity of $1.7times10^{10} L_{Kodot}$, allowing us to investigate the populations in a relatively low mass galaxy. We classify the detected X-ray sources into field LMXBs, globular cluster LMXBs, and background AGN based on identifying optical counterparts in new HST/ACS images. We detect 10 field LMXBs within the $r_{ext}$ ellipse of NGC 7457 (with semi-major axis $sim$ 9.1 kpc, ellipticity = 0.55). The corresponding number of LMXBs with $L_{x}>2times10^{37}erg/s$ per stellar luminosity is consistent with that observed in more massive galaxies, $sim 7$ per $10^{10} L_{Kodot}$. We detect a small globular cluster population in these HST data and show that its colour distribution is likely bimodal and that its specific frequency is similar to that of other early type galaxies. However, no X-ray emission is detected from any of these clusters. Using published data for other galaxies, we show that this non-detection is consistent with the small stellar mass of these clusters. We estimate that 0.11 (and 0.03) LMXBs are expected per $10^{6}M_{odot}$ in metal-rich (and metal-poor) globular clusters. This corresponds to 1100 (and 330) LMXBs per $10^{10} L_{Kodot}$, highlighting the enhanced formation efficiency of LMXBs in globular clusters. A nuclear X-ray source is detected with $L_{x}$ varying from $2.8-6.8times10^{38}erg/s$. Combining this $L_{x}$ with a published dynamical mass estimate for the central SMBH in NGC 7457, we find that $L_{x}/L_{Edd}$ varies from $0.5-1.3times10^{-6}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا