Do you want to publish a course? Click here

Deep Chandra observations of NGC~7457, the X-ray point source populations of a low mass early-type galaxy

292   0   0.0 ( 0 )
 Added by Mark Peacock
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the X-ray point source population of NGC 7457 based on 124 ks of Chandra observations. Previous deep Chandra observations of low mass X-ray binaries (LMXBs) in early-type galaxies have typically targeted the large populations of massive galaxies. NGC 7457 is a nearby, early-type galaxy with a stellar luminosity of $1.7times10^{10} L_{Kodot}$, allowing us to investigate the populations in a relatively low mass galaxy. We classify the detected X-ray sources into field LMXBs, globular cluster LMXBs, and background AGN based on identifying optical counterparts in new HST/ACS images. We detect 10 field LMXBs within the $r_{ext}$ ellipse of NGC 7457 (with semi-major axis $sim$ 9.1 kpc, ellipticity = 0.55). The corresponding number of LMXBs with $L_{x}>2times10^{37}erg/s$ per stellar luminosity is consistent with that observed in more massive galaxies, $sim 7$ per $10^{10} L_{Kodot}$. We detect a small globular cluster population in these HST data and show that its colour distribution is likely bimodal and that its specific frequency is similar to that of other early type galaxies. However, no X-ray emission is detected from any of these clusters. Using published data for other galaxies, we show that this non-detection is consistent with the small stellar mass of these clusters. We estimate that 0.11 (and 0.03) LMXBs are expected per $10^{6}M_{odot}$ in metal-rich (and metal-poor) globular clusters. This corresponds to 1100 (and 330) LMXBs per $10^{10} L_{Kodot}$, highlighting the enhanced formation efficiency of LMXBs in globular clusters. A nuclear X-ray source is detected with $L_{x}$ varying from $2.8-6.8times10^{38}erg/s$. Combining this $L_{x}$ with a published dynamical mass estimate for the central SMBH in NGC 7457, we find that $L_{x}/L_{Edd}$ varies from $0.5-1.3times10^{-6}$.



rate research

Read More

Chandra X-ray observations routinely resolve tens to hundreds of low-mass X-ray binaries (LMXBs) per galaxy in nearby massive early-type galaxies. These studies have raised important issues regarding the behavior of this population of remnants of the once massive stars in early-type galaxies, namely the connection between LMXBs and globular clusters (GCs) and the nature of the LMXB luminosity function (LF). In this paper, we combine five epochs of Chandra observations and one central field Hubble Space Telescope Advance Camera for Surveys observation of NGC 4697, one of the nearest, optically luminous elliptical (E6) galaxies, to probe the GC-LMXB connection and LMXB-LF down to a detection/completeness limit of (0.6/1.4) x 10^{37} ergs/s. We detect 158 sources, present their luminosities and hardness ratios, and associate 34 LMXBs with GCs. We confirm that GCs with higher encounter rates (Gamma_h) and redder colors (higher metallicity Z) are more likely to contain GCs, and find that the expected number of LMXBs per GC is proportional to Gamma_h^{0.79+0.18/-0.15} Z^{0.50+0.20/-0.18}, consistent with fainter X-ray sources in Galactic GCs and LMXBs in Virgo early-type galaxies. Approximately 11+/-2% / 8 +/-2% of GCs in NGC 4697 contain an LMXB at the detection/completeness limit. We propose that the larger proportion of metal-rich GCs in NGC 4697 compared to the Milky Way explains why these fractions are much higher than those of the Milky Way at similar luminosities. We confirm that a broken power-law is the best fit to the LMXB-LF, although we cannot rule out a cutoff power-law, and argue that this raises the possibility that there is no universal form for the LMXB-LF in early-type galaxies. We find marginal evidence for different LFs of LMXBs in GCs and the field and different spectra of GC-LMXBs and Field-LMXBs.
98 - Yuanyuan Su 2016
The intracluster medium (ICM), as a magnetized and highly ionized fluid, provides an ideal laboratory to study plasma physics under extreme conditions that cannot yet be achieved on Earth. NGC 1404 is a bright elliptical galaxy that is being gas stripped as it falls through the ICM of the Fornax Cluster. We use the new {sl Chandra} X-ray observations of NGC 1404 to study ICM microphysics. The interstellar medium (ISM) of NGC 1404 is characterized by a sharp leading edge, 8 kpc from the galaxy center, and a short downstream gaseous tail. Contact discontinuities are resolved on unprecedented spatial scales ($0farcs5=45$,pc) due to the combination of the proximity of NGC 1404, the superb spatial resolution of {sl Chandra}, and the very deep (670 ksec) exposure. At the leading edge, we observe sub-kpc scale eddies generated by Kelvin-Helmholtz instability and put an upper limit of 5% Spitzer on the isotropic viscosity of the hot cluster plasma. We also observe mixing between the hot cluster gas and the cooler galaxy gas in the downstream stripped tail, which provides further evidence of a low viscosity plasma. The assumed ordered magnetic fields in the ICM ought to be smaller than 5,$mu$G to allow KHI to develop. The lack of evident magnetic draping layer just outside the contact edge is consistent with such an upper limit.
Multi-epoch Chandra X-ray observations of nearby massive early-type galaxies open up the study of an important regime of low-mass X-ray binary (LMXB) behavior -- long term variability. In a companion paper, we report on the detection of 158 X-ray sources down to a detection/completeness limit of 0.6/1.4 x 10^{37} ergs/s using five Chandra observations of NGC 4697, one of the nearest (11.3 Mpc), optically luminous (M_B < -20), elliptical (E6) galaxy. In this paper, we report on the variability of LMXB candidates measured on timescales from seconds to years. At timescales of seconds to hours, we detect five sources with significant variability. Approximately 7% of sources show variability between any two observations, and 16+/-4% of sources do not have a constant luminosity over all five observations. Among variable sources, we identify eleven transient candidates, with which we estimate that if all LMXBs in NGC 4697 are long-term transients then they are on for ~ 100 yr and have a 7% duty cycle. These numbers are consistent with those found for brighter LMXBs in M87 and NGC 1399, which suggests that there does not appear to be a measurable difference between the outburst durations of long-term transient neutron star LMXBs and black hole LMXBs. We discuss in detail a transient supersoft source, whose properties are not easily explained by standard explanations for supersoft sources.
Prior to the launch of NuSTAR, it was not feasible to spatially resolve the hard (E > 10 keV) emission from galaxies beyond the Local Group. The combined NuSTAR dataset, comprised of three ~165 ks observations, allows spatial characterization of the hard X-ray emission in the galaxy NGC 253 for the first time. As a follow up to our initial study of its nuclear region, we present the first results concerning the full galaxy from simultaneous NuSTAR, Chandra, and VLBA monitoring of the local starburst galaxy NGC 253. Above ~10 keV, nearly all the emission is concentrated within 100 of the galactic center, produced almost exclusively by three nuclear sources, an off-nuclear ultraluminous X-ray source (ULX), and a pulsar candidate that we identify for the first time in these observations. We detect 21 distinct sources in energy bands up to 25 keV, mostly consisting of intermediate state black hole X-ray binaries. The global X-ray emission of the galaxy - dominated by the off-nuclear ULX and nuclear sources, which are also likely ULXs - falls steeply (photon index >~ 3) above 10 keV, consistent with other NuSTAR-observed ULXs, and no significant excess above the background is detected at E > 40 keV. We report upper limits on diffuse inverse Compton emission for a range of spatial models. For the most extended morphologies considered, these hard X-ray constraints disfavor a dominant inverse Compton component to explain the {gamma}-ray emission detected with Fermi and H.E.S.S. If NGC 253 is typical of starburst galaxies at higher redshift, their contribution to the E > 10 keV cosmic X-ray background is < 1%.
We present a comprehensive X-ray point source catalog of NGC 404 obtained as part of the Chandra Local Volume Survey. A new, 97 ks Chandra ACIS-S observation of NGC 404 was combined with archival observations for a total exposure of ~123 ks. Our survey yields 74 highly significant X-ray point sources and is sensitive to a limiting unabsorbed luminosity of ~6x10^35 erg s^-1 in the 0.35-8 keV band. To constrain the nature of each X-ray source, cross-correlations with multi-wavelength data were generated. We searched overlapping HST observations for optical counterparts to our X-ray detections, but find only two X-ray sources with candidate optical counterparts. We find 21 likely low mass X-ray binaries (LMXBs), although this number is a lower limit due to the difficulties in separating LMXBs from background AGN. The X-ray luminosity functions (XLFs) in both the soft and hard energy bands are presented. The XLFs in the soft band (0.5-2 keV) and the hard band (2-8 keV) have a limiting luminosity at the 90% completeness limit of 10^35 erg s^-1 and 10^36 erg s^-1, respectively, significantly lower than previous X-ray studies of NGC 404. We find the XLFs to be consistent with those of other X-ray populations dominated by LMXBs. However, the number of luminous (>10^37 erg s^-1) X-ray sources per unit stellar mass in NGC 404 is lower than is observed for other galaxies. The relative lack of luminous XRBs may be due to a population of LMXBs with main sequence companions formed during an epoch of elevated star formation ~0.5 Gyr ago.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا