No Arabic abstract
Using small automated telescopes in Arizona and Hawaii, the HATNet project has detected an object transiting one member of the double star system ADS 16402 AB. This system is a pair of G0 main-sequence stars with age about 3 Gyr at a distance of ~139 pc and projected separation of ~1550 AU. The transit signal has a period of 4.46529 days and depth of 0.015 mag. From follow-up photometry and spectroscopy, we find that the object is a hot Jupiter planet with mass about 0.53 M_jup and radius ~1.36 R_jup traveling in an orbit with semimajor axis 0.055 AU and inclination about 85.9 deg, thus transiting the star at impact parameter 0.74 of the stellar radius. Based on a data set spanning three years, ephemerides for the transit center are: T_C = 2453984.397 + N_tr * 4.46529. The planet, designated HAT-P-1b, appears to be at least as large in radius, and smaller in mean density, than any previously-known planet.
We describe the discovery of HAT-P-4b, a low-density extrasolar planet transiting BD+36 2593, a V = 11.2 mag slightly evolved metal-rich late F star. The planets orbital period is 3.056536+/-0.000057 d with a mid-transit epoch of 2,454,245.8154 +/- 0.0003 (HJD). Based on high-precision photometric and spectroscopic data, and by using transit light curve modeling, spectrum analysis and evolutionary models, we derive the following planet parameters: Mp= 0.68 +/- 0.04 MJ, Rp= 1.27 +/- 0.05 RJ, rho = 0.41 +/- 0.06 g cm-3 and a = 0.0446 +/- 0.0012 AU. Because of its relatively large radius, together with its assumed high metallicity of that of its parent star, this planet adds to the theoretical challenges to explain inflated extrasolar planets.
We report the discovery of HAT-P-26b, a transiting extrasolar planet orbiting the moderately bright V=11.744 K1 dwarf star GSC 0320-01027, with a period P = 4.234516 +- 0.000015 d, transit epoch Tc = 2455304.65122 +- 0.00035 (BJD), and transit duration 0.1023 +- 0.0010 d. The host star has a mass of 0.82 +- 0.03 Msun, radius of 0.79 + 0.10 - 0.04 Rsun, effective temperature 5079 +- 88 K, and metallicity [Fe/H] = -0.04 +- 0.08. The planetary companion has a mass of 0.059 +- 0.007 MJ, and radius of 0.565 + 0.072 - 0.032 RJ yielding a mean density of 0.40 +- 0.10 g cm-3. HAT-P-26b is the fourth Neptune-mass transiting planet discovered to date. It has a mass that is comparable to those of Neptune and Uranus, and slightly smaller than those of the other transiting Super-Neptunes, but a radius that is ~65% larger than those of Neptune and Uranus, and also larger than those of the other transiting Super-Neptunes. HAT-P-26b is consistent with theoretical models of an irradiated Neptune-mass planet with a 10 Mearth heavy element core that comprises >~ 50% of its mass with the remainder contained in a significant hydrogen-helium envelope, though the exact composition is uncertain as there are significant differences between various theoretical models at the Neptune-mass regime. The equatorial declination of the star makes it easily accessible to both Northern and Southern ground-based facilities for follow-up observations.
We report the discovery of a planet transiting a moderately faint (V=12.3 mag) late F star, with an orbital period of 3.92289 +/- 0.00004 days. From the transit light curve and radial velocity measurements we determine that the radius of the planet is R_p = 1.40 +/- 0.06 R_Jup and that the mass is M_p = 0.78 +/- 0.09 M_Jup. The density of the new planet, rho = 0.35 +/- 0.06 g cm^{-3}, fits to the low-density tail of the currently known transiting planets. We find that the center of transit is at T_c = 2454417.9077 +/- 0.0003 (HJD), and the total transit duration is 0.143 +/- 0.004 days. The host star has M_s = 1.28 +/- 0.13 M_Sun and R_s = 1.32 +/- 0.07 R_Sun.
We present new spectroscopic and photometric observations of the HAT-P-1 planetary system. Spectra obtained during three transits exhibit the Rossiter-McLaughlin effect, allowing us to measure the angle between the sky projections of the stellar spin axis and orbit normal, lambda = 3.7 +/- 2.1 degrees. The small value of lambda for this and other systems suggests that the dominant planet migration mechanism preserves spin-orbit alignment. Using two new transit light curves, we refine the transit ephemeris and reduce the uncertainty in the orbital period by an order of magnitude. We find a upper limit on the orbital eccentricity of 0.067, with 99% confidence, by combining our new radial-velocity measurements with those obtained previously.
We report the discovery of HAT-P-14b, a fairly massive transiting extrasolar planet orbiting the moderately bright star GSC 3086-00152 (V = 9.98), with a period of P = 4.627669 +/- 0.000005 days. The transit is close to grazing (impact parameter 0.891 +0.007/-0.008) and has a duration of 0.0912 +/- 0.0017 days, with a reference epoch of mid transit of Tc = 2454875.28938 +/- 0.00047 (BJD). The orbit is slightly eccentric (e = 0.107 +/- 0.013), and the orientation is such that occultations are unlikely to occur. The host star is a slightly evolved mid-F dwarf with a mass of 1.386 +/- 0.045 M(Sun), a radius of 1.468 +/- 0.054 R(Sun) effective temperature 6600 +/- 90 K, and a slightly metal-rich composition corresponding to [Fe/H] = +0.11 +/- 0.08. The planet has a mass of 2.232 +/- 0.059 M(Jup) and a radius of 1.150 +/- 0.052 R(Jup), implying a mean density of 1.82 +/- 0.24 g/cm3. Its radius is well reproduced by theoretical models for the 1.3 Gyr age of the system if the planet has a heavy-element fraction of about 50 M(Earth) (7% of its total mass). The brightness, near-grazing orientation, and other properties of HAT-P-14 make it a favorable transiting system to look for changes in the orbital elements or transit timing variations induced by a possible second planet, and also to place meaningful constraints on the presence of sub-Earth mass or Earth mass exomoons, by monitoring it for transit duration variations.