Do you want to publish a course? Click here

Multi-site campaign on the open cluster M67. I. Observations and photometric reductions

84   0   0.0 ( 0 )
 Added by Dennis Stello
 Publication date 2006
  fields Physics
and research's language is English
 Authors D. Stello




Ask ChatGPT about the research

We report on an ambitious multi-site campaign aimed at detecting stellar variability, particularly solar-like oscillations, in the red giant stars in the open cluster M67 (NGC 2682). During the six-week observing run, which comprised 164 telescope nights, we used nine 0.6-m to 2.1-m class telescopes located around the world to obtain uninterrupted time-series photometry. We outline here the data acquisition and reduction, with emphasis on the optimisation of the signal-to-noise of the low amplitude (50-500 micromag) solar-like oscillations. This includes a new and efficient method for obtaining the linearity profile of the CCD response at ultra high precision (~10 parts per million). The noise in the final time series is 0.50 mmag per minute integration for the best site, while the noise in the Fourier spectrum of all sites combined is 20 micromag. In addition to the red giant stars, this data set proves to be very valuable for studying high-amplitude variable stars such as eclipsing binaries, W UMa systems and delta Scuti stars.



rate research

Read More

CONTEXT: Recent progress in the seismic interpretation of field beta Cep stars has resulted in improvements of the physics in the stellar structure and evolution models of massive stars. Further asteroseismic constraints can be obtained from studying ensembles of stars in a young open cluster, which all have similar age, distance and chemical composition. AIMS: To improve our comprehension of the beta Cep stars, we studied the young open cluster NGC 884 to discover new B-type pulsators, besides the two known beta Cep stars, and other variable stars. METHODS: An extensive multi-site campaign was set up to gather accurate CCD photometry time series in four filters (U, B, V, I) of a field of NGC884. Fifteen different instruments collected almost 77500 CCD images in 1286 hours. The images were calibrated and reduced to transform the CCD frames into interpretable differential light curves. Various variability indicators and frequency analyses were applied to detect variable stars in the field. Absolute photometry was taken to deduce some general cluster and stellar properties. RESULTS: We achieved an accuracy for the brightest stars of 5.7 mmag in V, 6.9 mmag in B, 5.0 mmag in I and 5.3 mmag in U. The noise level in the amplitude spectra is 50 micromag in the V band. Our campaign confirms the previously known pulsators, and we report more than one hundred new multi- and mono-periodic B-, A- and F-type stars. Their interpretation in terms of classical instability domains is not straightforward, pointing to imperfections in theoretical instability computations. In addition, we have discovered six new eclipsing binaries and four candidates as well as other irregular variable stars in the observed field.
We have made an asteroseismic analysis of the variable blue stragglers in the open cluster M67. The data set consists of photometric time series from eight sites using nine 0.6-2.1 meter telescopes with a time baseline of 43 days. In two stars, EW Cnc and EX Cnc, we detect the highest number of frequencies (41 and 26) detected in delta Scuti stars belonging to a stellar cluster, and EW Cnc has the second highest number of frequencies detected in any delta Scuti star. We have computed a grid of pulsation models that take the effects of rotation into account. The distribution of observed and theoretical frequencies show that in a wide frequency range a significant fraction of the radial and non-radial low-degree modes are excited to detectable amplitudes. Despite the large number of observed frequencies we cannot constrain the fundamental parameters of the stars. To make progress we need to identify the degrees of some of the modes either from multi-colour photometry or spectroscopy.
152 - C. Ulusoy , B. Ulac{s} , T. Gulmez 2013
We present results of a multi-site photometric campaign on the high-amplitude $delta$,Scuti star KIC,6382916 in the {it Kepler} field. The star was observed over a 85-d interval at five different sites in North America and Europe during 2011. {it Kepler} photometry and ground-based multicolour light curves of KIC,6382916 are used to investigate the pulsational content and to identify the principal modes. High-dispersion spectroscopy was also obtained in order to derive the stellar parameters and projected rotational velocity. From an analysis of the {it Kepler} time series, three independent frequencies and a few hundred combination frequencies are found. The light curve is dominated by two modes with frequencies $f_{1}$= 4.9107 and $f_{2}$= 6.4314,d$^{-1}$. The third mode with $f_{3}$= 8.0350,d$^{-1}$ has a much lower amplitude. We attempt mode identification by examining the amplitude ratios and phase differences in different wavebands from multicolour photometry and comparing them to calculations for different spherical harmonic degree, $l$. We find that the theoretical models for $f_1$ and $f_2$ are in a best agreement with the observations and lead to value of l = 1 modes, but the mode identification of $f_3$ is uncertain due to its low amplitude. Non-adiabatic pulsation models show that frequencies below 6,d$^{-1}$ are stable, which means that the low frequency of $f_1$ cannot be reproduced. This is further confirmation that current models predict a narrower pulsation frequency range than actually observed.
283 - K. Biazzo 2008
The solar analogues are fundamental targets for a better understanding of our Sun and Solar System. Notwithstanding the efforts, this research is usually limited to field stars. The open cluster M67 offers a unique opportunity to search for solar analogues because its chemical composition and age are very similar to those of our star. In this work, we analyze FLAMES@VLT spectra of about one hundred of M67 main sequence stars with the aim to identify solar analogues. We first determine cluster members which are likely not binaries, by combining both proper motions and radial velocity measurements. Then, we concentrate our analysis on the determination of stellar effective temperature, using the analyzes of line-depth ratios and Halpha wings. Finally, we also compute lithium abundance for all the stars. Thanks to the our analysis, we find ten solar analogues, which allow us to derive a solar color (B-V)=0.649+/-0.016 and a cluster distance modulus of 9.63+/-0.08, very close to values found by previous authors. Among them, five are the best solar twins with temperature determinations within 60 K from the solar values. Our results lead us to do further spectroscopic investigations because the solar analogues candidates are suitable for planet search.
We have carried out a multi-site campaign to measure oscillations in the F5 star Procyon A. We obtained high-precision velocity observations over more than three weeks with eleven telescopes, with almost continuous coverage for the central ten days. This represents the most extensive campaign so far organized on any solar-type oscillator. We describe in detail the methods we used for processing and combining the data. These involved calculating weights for the velocity time series from the measurement uncertainties and adjusting them in order to minimize the noise level of the combined data. The time series of velocities for Procyon shows the clear signature of oscillations, with a plateau of excess power that is centred at 0.9 mHz and is broader than has been seen for other stars. The mean amplitude of the radial modes is 38.1 +/- 1.3 cm/s (2.0 times solar), which is consistent with previous detections from the ground and by the WIRE spacecraft, and also with the upper limit set by the MOST spacecraft. The variation of the amplitude during the observing campaign allows us to estimate the mode lifetime to be 1.5 d (+1.9/-0.8 d). We also find a slow variation in the radial velocity of Procyon, with good agreement between different telescopes. These variations are remarkably similar to those seen in the Sun, and we interpret them as being due to rotational modulation from active regions on the stellar surface. The variations appear to have a period of about 10 days, which presumably equals the stellar rotation period or, perhaps, half of it. The amount of power in these slow variations indicates that the fractional area of Procyon covered by active regions is slightly higher than for the Sun.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا