Do you want to publish a course? Click here

True solar analogues in the open cluster M67

289   0   0.0 ( 0 )
 Added by Katia Biazzo Dr
 Publication date 2008
  fields Physics
and research's language is English
 Authors K. Biazzo




Ask ChatGPT about the research

The solar analogues are fundamental targets for a better understanding of our Sun and Solar System. Notwithstanding the efforts, this research is usually limited to field stars. The open cluster M67 offers a unique opportunity to search for solar analogues because its chemical composition and age are very similar to those of our star. In this work, we analyze FLAMES@VLT spectra of about one hundred of M67 main sequence stars with the aim to identify solar analogues. We first determine cluster members which are likely not binaries, by combining both proper motions and radial velocity measurements. Then, we concentrate our analysis on the determination of stellar effective temperature, using the analyzes of line-depth ratios and Halpha wings. Finally, we also compute lithium abundance for all the stars. Thanks to the our analysis, we find ten solar analogues, which allow us to derive a solar color (B-V)=0.649+/-0.016 and a cluster distance modulus of 9.63+/-0.08, very close to values found by previous authors. Among them, five are the best solar twins with temperature determinations within 60 K from the solar values. Our results lead us to do further spectroscopic investigations because the solar analogues candidates are suitable for planet search.



rate research

Read More

140 - K. Biazzo 2009
Solar analogues are fundamental targets for a better understanding of our Sun and our Solar System. Usually, this research is limited to field stars, which offer several advantages and limitations. In this work, we present the results of a research of solar twins performed for the first time in a open cluster, namely M67. Our analysis allowed us to find five solar twins and also to derive a solar colour of (B-V)0=0.649+/-0.016 and a cluster distance modulus of 9.63+/-0.08. This study encourages us to apply the same method to other open clusters, and to do further investigations for planet search in the solar twins we find.
102 - F. Liu , M. Asplund , D. Yong 2016
Stars in open clusters are expected to share an identical abundance pattern. Establishing the level of chemical homogeneity in a given open cluster deserves further study as it is the basis of the concept of chemical tagging to unravel the history of the Milky Way. M67 is particularly interesting given its solar metallicity and age as well as being a dense cluster environment. We conducted a strictly line-by-line differential chemical abundance analysis of two solar twins in M67: M67-1194 and M67-1315. Stellar atmospheric parameters and elemental abundances were obtained with high precision using Keck/HIRES spectra. M67-1194 is essentially identical to the Sun in terms of its stellar parameters. M67-1315 is warmer than M67-1194 by ~ 150 K as well as slightly more metal-poor than M67-1194 by ~ 0.05 dex. M67-1194 is also found to have identical chemical composition to the Sun, confirming its solar twin nature. The abundance ratios [X/Fe] of M67-1315 are similar to the solar abundances for elements with atomic number Z <= 30, while most neutron-capture elements are enriched by ~ 0.05 dex, which might be attributed to enrichment from a mixture of AGB ejecta and r-process material. The distinct chemical abundances for the neutron-capture elements in M67-1315 and the lower metallicity of this star compared to M67-1194, indicate that the stars in M67 are likely not chemically homogeneous. This poses a challenge for the concept of chemical tagging since it is based on the assumption of stars forming in the same star-forming aggregate.
We present a study of the bright detached eclipsing main sequence binary WOCS 11028 (Sanders 617) in the open cluster M67. Although the binary has only one eclipse per orbital cycle, we show that the masses of the stars can be derived very precisely thanks to a strong constraint on the orbital inclination: $M_A = 1.222pm0.006 M_odot$ and $M_B = 0.909pm0.004 M_odot$. We use a spectral energy distribution fitting method to derive characteristics of the component stars in lieu of the precise radii that would normally be derived from a doubly-eclipsing binary. The deconvolution of the SEDs reveals that the brighter component of the binary is at the faint turnoff point for the cluster -- a distinct evolutionary point that occurs after the convective core has been established and while the star is in the middle of its movement toward lower surface temperature, before the so-called hook at the end of main sequence. The measurements are in distinct disagreement with evolution models at solar metallicity: higher metal abundances are needed to reproduce the characteristics of WOCS 11028 A. We discuss the changes to model physics that are likely to be needed to address the discrepancies. The clearest conclusions are that diffusion is probably necessary to reconcile spectroscopic abundances of M67 stars with the need for higher metallicity models, and that reduced strength convective overshooting is occurring for stars at the turnoff. At super-solar bulk metallicity, various indicators agree on a cluster age between about 3.5 and 4.0 Gyr.
140 - A. Bellini 2010
We derived the absolute proper motion (PM) of the old, solar-metallicity Galactic open cluster M67 using observations collected with CFHT (1997) and with LBT (2007). About 50 galaxies with relatively sharp nuclei allow us to determine the absolute PM of the cluster. We find (mu_alpha cos(delta),mu_delta)_J2000.0 = (-9.6+/-1.1,-3.7+/-0.8) mas/yr. By adopting a line-of-sight velocity of 33.8+/-0.2 km/s, and assuming a distance of 815+/-50 pc, we explore the influence of the Galactic potential, with and without the bar and/or spiral arms, on the galactic orbit of the cluster.
We present the results of a 47-ks Chandra-ACIS observation of the old open cluster M67. We detected 25 proper-motion cluster members (including ten new sources) and 12 sources (all new) that we suspect to be members from their locations close to the main sequence (1 < B-V < 1.7). Of the detected members, 23 are binaries. Among the new sources that are members and probable members are four spectroscopic binaries with P_orb < 12 d, two contact binaries and two periodic photometric variables with P_ph < 8.4 d. Their X-rays are likely the result of coronal activity enhanced by tidally locked rapid rotation. The X-rays of the new source S997, a blue straggler in a wide eccentric orbit, are puzzling. Spectral fits show that the X-rays of the brightest sources S1063 (a binary with a sub-subgiant), S1082 (a triple blue straggler with a close binary) and S1040 (a circular binary of a giant and a cool white dwarf), are consistent with coronal emission. We detected a new bright source that must have brightened at least about ten times since the time of the ROSAT observations. It is not clear whether its faint blue optical counterpart belongs to M67. We discuss the possibility that this source is a low-mass X-ray binary in quiescence, which would be the first of its kind in an open cluster. In addition to cluster members, we detected about 100 background sources, many of which we identify with faint objects in the ESO Imaging Survey.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا