Do you want to publish a course? Click here

Hydrodynamic Thermonuclear Runaways in Superbursts

64   0   0.0 ( 0 )
 Added by Nevin N. Weinberg
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We calculate the thermal and dynamical evolution of the surface layers of an accreting neutron star during the rise of a superburst. For the first few hours following unstable 12C ignition, the nuclear energy release is transported by convection. However, as the base temperature rises, the heating time becomes shorter than the eddy turnover time and convection becomes inefficient. This results in a hydrodynamic nuclear runaway, in which the heating time becomes shorter than the local dynamical time. Such hydrodynamic burning can drive shock waves into the surrounding layers and may be the trigger for the normal X-ray burst found to immediately precede the onset of the superburst in both cases where the Rossi X-Ray Timing Explorer was observing.



rate research

Read More

Runaway thermonuclear burning of a layer of accumulated fuel on the surface of a compact star provides a brief but intense display of stellar nuclear processes. For neutron stars accreting from a binary companion, these events manifest as thermonuclear (type-I) X-ray bursts, and recur on typical timescales of hours to days. We measured the burst rate as a function of accretion rate, from seven neutron stars with known spin rates, using a burst sample accumulated over several decades. At the highest accretion rates, the burst rate is lower for faster spinning stars. The observations imply that fast (> 400 Hz) rotation encourages stabilization of nuclear burning, suggesting a dynamical dependence of nuclear ignition on the spin rate. This dependence is unexpected, because faster rotation entails less shear between the surrounding accretion disk and the star. Large-scale circulation in the fuel layer, leading to enhanced mixing of the burst ashes into the fuel layer, may explain this behavior; further numerical simulations are required to confirm.
96 - Jean in t Zand 2017
Superbursts were discovered at the beginning of this millennium. Just like type-I X-ray bursts, they are thought to be due to thermonuclear shell flashes on neutron stars, only igniting much deeper. With respect to type-I bursts, they last 10$^3$ times longer, are 10$^3$ as rare, ignite 10$^3$ times deeper (in column depth) and are thought to be fueled by carbon instead of hydrogen and helium. Observationally, they are sometimes hard to distinguish from intermediate duration bursts which are due to pure helium flashes on cold neutron stars. So far, 26 superbursts have been detected from 15 neutron stars in low-mass X-ray binaries that also exhibit type-I bursts. They are very difficult to catch and only 2 have been measured with highly sensitive instrumentation. Superbursts are sensitive probes of the neutron star crust and the accretion disk. The superburst phenomenon is not fully understood. Questions remain about the nature of the fuel, the collection of that fuel and the ignition conditions. The current state of affairs is reviewed and possible resolutions that lay ahead in the future discussed.
We argue that moduli stabilization generically restricts the evolution following transitions between weakly coupled de Sitter vacua and can induce a strong selection bias towards inflationary cosmologies. The energy density of domain walls between vacua typically destabilizes Kahler moduli and triggers a runaway towards large volume. This decompactification phase can collapse the new de Sitter region unless a minimum amount of inflation occurs after the transition. A stable vacuum transition is guaranteed only if the inflationary expansion generates overlapping past light cones for all observable modes originating from the reheating surface, which leads to an approximately flat and isotropic universe. High scale inflation is vastly favored. Our results point towards a framework for studying parameter fine-tuning and inflationary initial conditions in flux compactifications.
190 - Jean in t Zand 2011
The past decade and a half has seen many interesting new developments in X-ray burst research, both observationally and theoretically. New phenomena were discovered, such as burst oscillations and superbursts, and new regimes of thermonuclear burning identified. An important driver of the research with present and future instrumentation in the coming years is the pursuit of fundamental neutron star parameters. However, several other more direct questions are also in dire need of an answer. For instance, how are superbursts ignited and why do burst oscillations exist in burst tails? We briefly review recent developments and discuss the role that MAXI can play. Thanks to MAXIs large visibility window and large duty cycle, it is particularly well suited to investigate the recurrence of rare long duration bursts such as superbursts. An exploratory study of MAXI data is briefly presented.
A significant fraction of massive stars in the Milky Way and other galaxies are located far from star clusters. It is known that some of these stars are runaways and therefore most likely were formed in embedded clusters and then ejected into the field because of dynamical few-body interactions or binary-supernova explosions. However, there exists a group of field O stars whose runaway status is difficult to prove via direct proper motion measurements or whose low space velocities and/or young ages appear to be incompatible with their large separation from known star clusters. The existence of this group led some authors to believe that field O stars can form in situ. In this paper, we examine the runaway status of the best candidates for isolated formation of massive stars in the Milky Way and the Magellanic Clouds by searching for bow shocks around them, by using the new reduction of the Hipparcos data, and by searching for stellar systems from which they could originate within their lifetimes. We show that most of the known O stars thought to have formed in isolation are instead very likely runaways. We show also that the field must contain a population of O stars whose low space velocities and/or young ages are in apparent contradiction with the large separation of these stars from their parent clusters and/or the ages of these clusters. These stars (the descendants of runaway massive binaries) cannot be traced back to their parent clusters and therefore can be mistakenly considered as having formed in situ. We argue also that some field O stars could be detected in optical wavelengths only because they are runaways, while their cousins residing in the deeply embedded parent clusters might still remain totally obscured. The main conclusion of our study is that there is no significant evidence whatsoever in support of the in situ proposal on the origin of massive stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا