Do you want to publish a course? Click here

Massive Young Stellar Objects in the Large Magellanic Cloud: water masers and ESO-VLT 3-4 micron spectroscopy

120   0   0.0 ( 0 )
 Added by J. M. Oliveira
 Publication date 2006
  fields Physics
and research's language is English
 Authors J.M. Oliveira




Ask ChatGPT about the research

We investigate the conditions of star formation in the Large Magellanic Cloud. We have conducted a survey for water maser emission arising from massive young stellar objects in the 30 Doradus region (N 157) and several other H II regions in the Large Magellanic Cloud (N 105A, N 113 and N 160A). We have identified a new maser source in 30 Dor at the systemic velocity of the LMC. We have obtained 3-4 micron spectra, with the ESO Very Large Telescope, of two candidate young stellar objects. N 105A IRS1 shows H recombination line emission and its Spectral Energy Distribution (SED) and mid-infrared colours are consistent with a massive young star ionising the molecular cloud. N 157B IRS1 is identified as an embedded young object, based on its SED and a tentative detection of water ice. The data on these four H II regions are combined with mid-infrared archival images from the Spitzer Space Telescope to study the location and nature of the embedded massive young stellar objects and signatures of stellar feedback. Our analysis of 30 Dor, N 113 and N 160A confirms the picture that the feedback from the massive O and B-type stars, which creates the H II regions, also triggers further star formation on the interfaces of the ionised gas and the surrounding molecular cloud. Although in the dense cloud N 105A star formation seems to occur without evidence of massive star feedback, the general conditions in the LMC seem favourable for sequential star formation as a result of feedback. In an appendix we present water maser observations of the galactic red giants R Doradus and W Hydrae.



rate research

Read More

The process of massive star ($Mgeq8~M_odot$) formation is still poorly understood. Observations of massive young stellar objects (MYSOs) are challenging due to their rarity, short formation timescale, large distances, and high circumstellar extinction. Here, we present the results of a spectroscopic analysis of a population of MYSOs in the Large Magellanic Cloud (LMC). We took advantage of the spectral resolution and wavelength coverage of X-shooter (300-2500 nm), mounted on the European Southern Observatory Very Large Telescope, to detect characteristic spectral features in a dozen MYSO candidates near 30 Doradus, the largest starburst region in the Local Group hosting the most massive stars known. The X-shooter spectra are strongly contaminated by nebular emission. We used a scaling method to subtract the nebular contamination from our objects. We detect H$alpha,beta$, [O I] 630.0 nm, Ca II infrared triplet, [Fe II] 1643.5 nm, fluorescent Fe II 1687.8 nm, H$_2$ 2121.8 nm, Br$gamma$, and CO bandhead emission in the spectra of multiple candidates. This leads to the spectroscopic confirmation of 10 candidates as bona fide MYSOs. We compare our observations with photometric observations from the literature and find all MYSOs to have a strong near-infrared excess. We compute lower limits to the brightness and luminosity of the MYSO candidates, confirming the near-infrared excess and the massive nature of the objects. No clear correlation is seen between the Br$gamma$ luminosity and metallicity. Combining our sample with other LMC samples results in a combined detection rate of disk features such as fluorescent Fe II and CO bandheads which is consistent with the Galactic rate (40%). Most of our MYSOs show outflow features.
(Abridged) Photometry of archival Spitzer observations of the Large Magellanic Cloud (LMC) are used to search for young stellar objects (YSOs). Simple mid-infrared selection criteria were used to exclude most normal and evolved stars and background galaxies. We identify a sample of 2,910 sources in the LMC that could potentially be YSOs. We then simultaneously considered images and photometry from the optical through mid-IR wavelengths to assess the source morphology, spectral energy distribution (SED), and the surrounding interstellar environment to determine the most likely nature of each source. From this examination of the initial sample, we suggest 1,172 sources are most likely YSOs and 1,075 probable background galaxies, consistent with expectations based on SWIRE survey data. Spitzer IRS observations of 269 of the brightest YSOs from our sample have confirmed that ~>95% are indeed YSOs. A comprehensive search for YSOs in the LMC has also been carried out by the SAGE team. There are three major differences between these two searches. (1) In the common region of color-magnitude space, ~850 of our 1,172 probable YSOs are missed in the SAGE YSO catalog because their conservative point source identification criteria have excluded YSOs superposed on complex diffuse emission. (2) About 20-30% of the YSOs identified by the SAGE team are sources we classify as background galaxies. (3) the SAGE YSO catalog identifies YSO in parts of color-magnitude space that we excluded and thus contains more evolved or fainter YSOs missed by our analysis. Finally, the mid-IR luminosity functions of our most likely YSO candidates in the LMC can be well described by N(L) propto L^-1, which is consistent with the Salpeter initial mass function if a mass-luminosity relation of L propto M^2.4 is adopted.
We present Herschel Space Observatory Photodetector Array Camera and Spectrometer (PACS) and Spectral and Photometric Imaging Receiver Fourier Transform Spectrometer (SPIRE FTS) spectroscopy of a sample of twenty massive Young Stellar Objects (YSOs) in the Large and Small Magellanic Clouds (LMC and SMC). We analyse the brightest far infrared (far-IR) emission lines, that diagnose the conditions of the heated gas in the YSO envelope and pinpoint their physical origin.We compare the properties of massive Magellanic and Galactic YSOs.We find that [OI] and [CII] emission, that originates from the photodissociation region associated with the YSOs, is enhanced with respect to the dust continuum in the Magellanic sample. Furthermore the photoelectric heating efficiency is systematically higher for Magellanic YSOs, consistent with reduced grain charge in low metallicity environments. The observed CO emission is likely due to multiple shock components. The gas temperatures, derived from the analysis of CO rotational diagrams, are similar to Galactic estimates. This suggests a common origin to the observed CO excitation, from low-luminosity to massive YSOs, both in the Galaxy and the Magellanic Clouds. Bright far-IR line emission provides a mechanism to cool the YSO environment. We find that, even though [OI], CO and [CII] are the main line coolants, there is an indication that CO becomes less important at low metallicity, especially for the SMC sources. This is consistent with a reduction in CO abundance in environments where the dust is warmer due to reduced ultraviolet-shielding. Weak H$_2$O and OH emission is detected, consistent with a modest role in the energy balance of wider massive YSO environments.
The textit{Spitzer} SAGE survey has allowed the identification and analysis of significant samples of Young Stellar Object (YSO) candidates in the Large Magellanic Cloud (LMC). However the angular resolution of textit{Spitzer} is relatively poor meaning that at the distance of the LMC, it is likely that many of the textit{Spitzer} YSO candidates in fact contain multiple components. We present high resolution textit{K}-band integral field spectroscopic observations of the three most prominent massive YSO candidates in the N113 H,{sc ii} region using VLT/SINFONI. We have identified six textit{K}-band continuum sources within the three textit{Spitzer} sources and we have mapped the morphology and velocity fields of extended line emission around these sources. Br$gamma$, He,{sc i} and H$_2$ emission is found at the position of all six textit{K}-band sources; we discuss whether the emission is associated with the continuum sources or whether it is ambient emission. H$_2$ emission appears to be mostly ambient emission and no evidence of CO emission arising in the discs of YSOs has been found. We have mapped the centroid velocities of extended Br$gamma$ emission and He {sc i} emission and found evidence of two expanding compact H,{sc ii} regions. One source shows compact and strong H$_2$ emission suggestive of a molecular outflow. The diversity of spectroscopic properties observed is interpreted in the context of a range of evolutionary stages associated with massive star formation.
475 - J.M. Oliveira 2009
We present spectroscopic observations of a sample of 15 embedded young stellar objects (YSOs) in the Large Magellanic Cloud (LMC). These observations were obtained with the Spitzer Infrared Spectrograph (IRS) as part of the SAGE-Spec Legacy program. We analyze the two prominent ice bands in the IRS spectral range: the bending mode of CO_2 ice at 15.2 micron and the ice band between 5 and 7 micron that includes contributions from the bending mode of water ice at 6 micron amongst other ice species. The 5-7 micron band is difficult to identify in our LMC sample due to the conspicuous presence of PAH emission superimposed onto the ice spectra. We identify water ice in the spectra of two sources; the spectrum of one of those sources also exhibits the 6.8 micron ice feature attributed to ammonium and methanol. We model the CO_2 band in detail, using the combination of laboratory ice profiles available in the literature. We find that a significant fraction (> 50%) of CO_2 ice is locked in a water-rich component, consistent with what is observed for Galactic sources. The majority of the sources in the LMC also require a pure-CO_2 contribution to the ice profile, evidence of thermal processing. There is a suggestion that CO_2 production might be enhanced in the LMC, but the size of the available sample precludes firmer conclusions. We place our results in the context of the star formation environment in the LMC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا