Do you want to publish a course? Click here

High and Intermediate-Mass Young Stellar Objects in the Large Magellanic Cloud

283   0   0.0 ( 0 )
 Added by Robert A. Gruendl
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

(Abridged) Photometry of archival Spitzer observations of the Large Magellanic Cloud (LMC) are used to search for young stellar objects (YSOs). Simple mid-infrared selection criteria were used to exclude most normal and evolved stars and background galaxies. We identify a sample of 2,910 sources in the LMC that could potentially be YSOs. We then simultaneously considered images and photometry from the optical through mid-IR wavelengths to assess the source morphology, spectral energy distribution (SED), and the surrounding interstellar environment to determine the most likely nature of each source. From this examination of the initial sample, we suggest 1,172 sources are most likely YSOs and 1,075 probable background galaxies, consistent with expectations based on SWIRE survey data. Spitzer IRS observations of 269 of the brightest YSOs from our sample have confirmed that ~>95% are indeed YSOs. A comprehensive search for YSOs in the LMC has also been carried out by the SAGE team. There are three major differences between these two searches. (1) In the common region of color-magnitude space, ~850 of our 1,172 probable YSOs are missed in the SAGE YSO catalog because their conservative point source identification criteria have excluded YSOs superposed on complex diffuse emission. (2) About 20-30% of the YSOs identified by the SAGE team are sources we classify as background galaxies. (3) the SAGE YSO catalog identifies YSO in parts of color-magnitude space that we excluded and thus contains more evolved or fainter YSOs missed by our analysis. Finally, the mid-IR luminosity functions of our most likely YSO candidates in the LMC can be well described by N(L) propto L^-1, which is consistent with the Salpeter initial mass function if a mass-luminosity relation of L propto M^2.4 is adopted.

rate research

Read More

413 - J.M. Oliveira 2009
We present spectroscopic observations of a sample of 15 embedded young stellar objects (YSOs) in the Large Magellanic Cloud (LMC). These observations were obtained with the Spitzer Infrared Spectrograph (IRS) as part of the SAGE-Spec Legacy program. We analyze the two prominent ice bands in the IRS spectral range: the bending mode of CO_2 ice at 15.2 micron and the ice band between 5 and 7 micron that includes contributions from the bending mode of water ice at 6 micron amongst other ice species. The 5-7 micron band is difficult to identify in our LMC sample due to the conspicuous presence of PAH emission superimposed onto the ice spectra. We identify water ice in the spectra of two sources; the spectrum of one of those sources also exhibits the 6.8 micron ice feature attributed to ammonium and methanol. We model the CO_2 band in detail, using the combination of laboratory ice profiles available in the literature. We find that a significant fraction (> 50%) of CO_2 ice is locked in a water-rich component, consistent with what is observed for Galactic sources. The majority of the sources in the LMC also require a pure-CO_2 contribution to the ice profile, evidence of thermal processing. There is a suggestion that CO_2 production might be enhanced in the LMC, but the size of the available sample precludes firmer conclusions. We place our results in the context of the star formation environment in the LMC.
We present a study of the kinematical properties of a small sample of nearby near-infrared bright massive and intermediate mass young stellar objects using emission lines sensitive to discs and winds. We show for the first time that the broad ($sim500$kms$^{-1}$) symmetric line wings on the HI Brackett series lines are due to Stark broadening or electron scattering, rather than pure Doppler broadening due to high speed motion. The results are consistent with the presence of a very dense circumstellar environment. In addition, many of these lines show evidence for weak line self-absorption, suggestive of a wind or disc-wind origin for that part of the absorbing material. The weakness of the self-absorption suggests a large opening angle for such an outflow. We also study the fluorescent 1.688$mu$m FeII line, which is sensitive to dense material. We fitted a Keplerian disc model to this line, and find reasonable fits in all bar one case, in agreement with previous finding for classical Be stars that fluorescent iron transitions are reasonable disc tracers. Overall the picture is one in which these stars still have accretion discs, with a very dense inner circumstellar environment which may be tracing either the inner regions of a disc, or of a stellar wind, and in which ionised outflow is also present. The similarity with lower mass stars is striking, suggesting that at least in this mass range they form in a similar fashion.
We have carried out a search for optically visible post-Asymptotic Giant Branch (post-AGB) stars in the Large Magellanic Cloud (LMC). First, we selected candidates with a mid-IR excess and then obtained their optical spectra. We disentangled contaminants with unique spectra such as M-stars, C-stars, planetary nebulae, quasi-stellar objects and background galaxies. Subsequently, we performed a detailed spectroscopic analysis of the remaining candidates to estimate their stellar parameters such as effective temperature, surface gravity (log g), metallicity ([Fe/H]), reddening and their luminosities. This resulted in a sample of 35 likely post-AGB candidates with late-G to late-A spectral types, low log g, and [Fe/H] < -0.5. Furthermore, our study confirmed the existence of the dusty post-Red Giant Branch (post-RGB) stars, discovered previously in our SMC survey, by revealing 119 such objects in the LMC. These objects have mid-IR excesses and stellar parameters (Teff, log g, [Fe/H]) similar to those of post-AGB stars except that their luminosities (< 2500 Lsun), and hence masses and radii, are lower. These post-RGB stars are likely to be products of binary interaction on the RGB. The post-AGB and post-RGB objects show SED properties similar to the Galactic post-AGB stars, where some have a surrounding circumstellar shell, while some others have a surrounding stable disc similar to the Galactic post-AGB binaries. This study also resulted in a new sample of 162 young stellar objects, identified based on a robust log g criterion. Other interesting outcomes include objects with an UV continuum and an emission line spectrum; luminous supergiants; hot main-sequence stars; and 15 B[e] star candidates, 12 of which are newly discovered in this study.
The aim of this study is to understand the chemical conditions of ices around embedded young stellar objects (YSOs) in the metal-poor Large Magellanic Cloud (LMC). We performed near-infrared (2.5-5 micron) spectroscopic observations toward 12 massive embedded YSOs and their candidates in the LMC using the Infrared Camera (IRC) onboard AKARI. We estimated the column densities of the H2O, CO2, and CO ices based on their 3.05, 4.27, and 4.67 micron absorption features, and we investigated the correlation between ice abundances and physical properties of YSOs.The ice absorption features of H2O, CO2, 13CO2, CO, CH3OH, and possibly XCN are detected in the spectra. In addition, hydrogen recombination lines and PAH emission bands are detected toward the majority of the targets. The derived typical CO2/H2O ice ratio of our samples (~0.36 +- 0.09) is greater than that of Galactic massive YSOs (~0.17 +- 0.03), while the CO/H2O ice ratio is comparable. It is shown that the CO2 ice abundance does not correlate with the observed characteristics of YSOs; the strength of hydrogen recombination line and the total luminosity. Likewise, clear no correlation is seen between the CO ice abundance and YSO characteristics, but it is suggested that the CO ice abundance of luminous samples is significantly lower than in other samples.The systematic difference in the CO2 ice abundance around the LMCs massive YSOs, which was suggested by previous studies, is confirmed with the new near-infrared data. We suggest that the strong ultraviolet radiation field and/or the high dust temperature in the LMC are responsible for the observed high abundance of the CO2 ice. It is suggested that the internal stellar radiation does not play an important role in the evolution of the CO2 ice around a massive YSO, while more volatile molecules like CO are susceptible to the effect of the stellar radiation.
We present new observations of 34 YSO candidates in the SMC. The anchor of the analysis is a set of Spitzer-IRS spectra, supplemented by groundbased 3-5 micron spectra, Spitzer and NIR photometry, optical spectroscopy and radio data. The sources SEDs and spectral indices are consistent with embedded YSOs; prominent silicate absorption is observed in the spectra of at least ten sources, silicate emission is observed towards four sources. PAH emission is detected towards all but two sources. Based on band ratios (in particular the strength of the 11.3 micron and the weakness of the 8.6 micron bands) PAH emission towards SMC YSOs is dominated by predominantly small neutral grains. Ice absorption is observed towards fourteen sources in the SMC. The comparison of H2O and CO2 ice column densities for SMC, LMC and Galactic samples suggests that there is a significant H2O column density threshold for the detection of CO2 ice. This supports the scenario proposed by Oliveira et al. (2011), where the reduced shielding in metal-poor environments depletes the H2O column density in the outer regions of the YSO envelopes. No CO ice is detected towards the SMC sources. Emission due to pure-rotational 0-0 transitions of H2 is detected towards the majority of SMC sources, allowing us to estimate rotational temperatures and column densities. All but one source are spectroscopically confirmed as SMC YSOs. Of the 33 YSOs identified in the SMC, 30 sources populate different stages of massive stellar evolution. The remaining three sources are classified as intermediate-mass YSOs with a thick dusty disc and a tenuous envelope still present. We propose one of the sources is a D-type symbiotic system, based on the presence of Raman, H and He emission lines in the optical spectrum, and silicate emission in the IRS-spectrum. This would be the first dust-rich symbiotic system identified in the SMC. (abridged)
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا