The large-scale dynamics of a two-fluid system with a time dependent interaction is studied analytically and numerically. We show how a rapid transition can significantly suppress the large-scale curvature perturbation and present approximative formulae for estimating the effect. By comparing to numerical results, we study the applicability of the approximation and find good agreement with exact calculations.
We present a gauge-invariant formalism to study the evolution of curvature perturbations in a Friedmann-Robertson-Walker universe filled by multiple interacting fluids. We resolve arbitrary perturbations into adiabatic and entropy components and derive their coupled evolution equations. We demonstrate that perturbations obeying a generalised adiabatic condition remain adiabatic in the large-scale limit, even when one includes energy transfer between fluids. As a specific application we study the recently proposed curvaton model, in which the curvaton decays into radiation. We use the coupled evolution equations to show how an initial isocurvature perturbation in the curvaton gives rise to an adiabatic curvature perturbation after the curvaton decays.
The delta N formula for the primordial curvature perturbation zeta is extended to include vector as well as scalar fields. Formulas for the tree-level contributions to the spectrum and bispectrum of zeta are given, exhibiting statistical anisotropy. The one-loop contribution to the spectrum of zeta is also worked out. We then consider the generation of vector field perturbations from the vacuum, including the longitudinal component that will be present if there is no gauge invariance. Finally, the delta N formula is applied to the vector curvaton and vector inflation models with the tensor perturbation also evaluated in the latter case.
We study the imprints of an effective dark energy fluid in the large scale structure of the universe through the observed angular power spectrum of galaxies in the relativistic regime. We adopt the phenomenological approach that introduces two parameters ${Q,eta}$ at the level of linear perturbations and allow to take into account the modified clustering (or effective gravitational constant) and anisotropic stress appearing in models beyond $Lambda$CDM. We characterize the effective dark energy fluid by an equation of state parameter $w=-0.95$ and various sound speed cases in the range $10^{-6}leq c^2_sleq 1$, thus covering K-essence and quintessence cosmologies. We calculate the angular power spectra of standard and relativistic effects for these scenarios under the ${Q,eta}$ parametrization, and we compare these relative to a fiducial $Lambda$CDM cosmology. We find that, overall, deviations relative to $Lambda$CDM are stronger at low redshift since the behavior of the dark energy fluid can mimic the cosmological constant during matter domination era but departs during dark energy domination. In particular, at $z=0.1$ the matter density fluctuations are suppressed by up to $sim3%$ for the quintessence-like case, while redshift-space distortions and Doppler effect can be enhanced by $sim15%$ at large scales for the lowest sound speed scenario. On the other hand, at $z=2$ we find deviations of up to $sim5%$ in gravitational lensing, whereas the Integrated Sachs-Wolfe effect can deviate up to $sim17%$. Furthermore, when considering an imperfect dark energy fluid scenario, we find that all effects are insensitive to the presence of anisotropic stress at low redshift, and only the Integrated Sachs-Wolfe effect can detect this feature at $z=2$ and very large scales.
Standard cosmological perturbation theory (SPT) for the Large Scale Structure (LSS) of the Universe fails at small scales (UV) due to strong nonlinearities and to multistreaming effects. In Pietroni et al. 2011 a new framework was proposed in which the large scales (IR) are treated perturbatively while the information on the UV, mainly small scale velocity dispersion, is obtained by nonlinear methods like N-body simulations. Here we develop this approach, showing that it is possible to reproduce the fully nonlinear power spectrum (PS) by combining a simple (and fast) 1-loop computation for the IR scales and the measurement of a single, dominant, correlator from N-body simulations for the UV ones. We measure this correlator for a suite of seven different cosmologies, and we show that its inclusion in our perturbation scheme reproduces the fully non-linear PS with percent level accuracy, for wave numbers up to $ksim 0.4, h~{rm Mpc^{-1}}$ down to $z=0$. We then show that, once this correlator has been measured in a given cosmology, there is no need to run a new simulation for a different cosmology in the suite. Indeed, by rescaling this correlator by a proper function computable in SPT, the reconstruction procedure works also for the other cosmologies and for all redshifts, with comparable accuracy. Finally, we clarify the relation of this approach to the Effective Field Theory methods recently proposed in the LSS context.
The properties of primordial curvature perturbations on small scales are still unknown while those on large scales have been well probed by the observations of the cosmic microwave background anisotropies and the large scale structure. In this paper, we propose the reconstruction method of primordial curvature perturbations on small scales through the merger rate of binary primordial black holes, which could form from large primordial curvature perturbation on small scales.