No Arabic abstract
The delta N formula for the primordial curvature perturbation zeta is extended to include vector as well as scalar fields. Formulas for the tree-level contributions to the spectrum and bispectrum of zeta are given, exhibiting statistical anisotropy. The one-loop contribution to the spectrum of zeta is also worked out. We then consider the generation of vector field perturbations from the vacuum, including the longitudinal component that will be present if there is no gauge invariance. Finally, the delta N formula is applied to the vector curvaton and vector inflation models with the tensor perturbation also evaluated in the latter case.
We study the dynamics of cosmological perturbations in models of dark matter based on ultralight coherent vector fields. Very much as for scalar field dark matter, we find two different regimes in the evolution: for modes with $k^2ll {cal H}ma$, we have a particle-like behaviour indistinguishable from cold dark matter, whereas for modes with $k^2gg {cal H}ma$, we get a wave-like behaviour in which the sound speed is non-vanishing and of order $c_s^2simeq k^2/m^2a^2$. This implies that, also in these models, structure formation could be suppressed on small scales. However, unlike the scalar case, the fact that the background evolution contains a non-vanishing homogeneous vector field implies that, in general, the evolution of the three kinds of perturbations (scalar, vector and tensor) can no longer be decoupled at the linear level. More specifically, in the particle regime, the three types of perturbations are actually decoupled, whereas in the wave regime, the three vector field perturbations generate one scalar-tensor and two vector-tensor perturbations in the metric. Also in the wave regime, we find that a non-vanishing anisotropic stress is present in the perturbed energy-momentum tensor giving rise to a gravitational slip of order $(Phi-Psi)/Phisim c_s^2$. Moreover in this regime the amplitude of the tensor to scalar ratio of the scalar-tensor modes is also $h/Phisim c_s^2$. This implies that small-scale density perturbations are necessarily associated to the presence of gravity waves in this model. We compare their spectrum with the sensitivity of present and future gravity waves detectors.
The large-scale dynamics of a two-fluid system with a time dependent interaction is studied analytically and numerically. We show how a rapid transition can significantly suppress the large-scale curvature perturbation and present approximative formulae for estimating the effect. By comparing to numerical results, we study the applicability of the approximation and find good agreement with exact calculations.
The production rate of primordial black holes is often calculated by considering a nearly Gaussian distribution of cosmological perturbations, and assuming that black holes will form in regions where the amplitude of such perturbations exceeds a certain threshold. A threshold $zeta_{rm th}$ for the curvature perturbation is somewhat inappropriate for this purpose, because it depends significantly on environmental effects, not essential to the local dynamics. By contrast, a threshold $delta_{rm th}$ for the density perturbation at horizon crossing seems to provide a more robust criterion. On the other hand, the density perturbation is known to be bounded above by a maximum limit $delta_{rm max}$, and given that $delta_{rm th}$ is comparable to $delta_{rm max}$, the density perturbation will be far from Gaussian near or above the threshold. In this paper, we provide a new plausible estimate for the primordial black hole abundance based on peak theory. In our approach, we assume that the curvature perturbation is given as a random Gaussian field with the power spectrum characterized by a single scale, while an optimized criterion for PBH formation is imposed, based on the locally averaged density perturbation. Both variables are related by the full nonlinear expression derived in the long-wavelength approximation of general relativity. We do not introduce a window function, and the scale of the inhomogeneity is introduced as a random variable in the peak theory. We find that the mass spectrum is shifted to larger mass scales by one order of magnitude or so, compared to a conventional calculation. The abundance of PBHs becomes significantly larger than the conventional one, by many orders of magnitude, mainly due to the optimized criterion for PBH formation and the removal of the suppresion associated with a window function.
We present a gauge-invariant formalism to study the evolution of curvature perturbations in a Friedmann-Robertson-Walker universe filled by multiple interacting fluids. We resolve arbitrary perturbations into adiabatic and entropy components and derive their coupled evolution equations. We demonstrate that perturbations obeying a generalised adiabatic condition remain adiabatic in the large-scale limit, even when one includes energy transfer between fluids. As a specific application we study the recently proposed curvaton model, in which the curvaton decays into radiation. We use the coupled evolution equations to show how an initial isocurvature perturbation in the curvaton gives rise to an adiabatic curvature perturbation after the curvaton decays.
We consider the benefits of measuring cosmic statistical anisotropy from redshift-space correlators of the galaxy number density fluctuation and the peculiar velocity field without adopting the plane-parallel (PP) approximation. Since the correlators are decomposed using the general tripolar spherical harmonic (TripoSH) basis, we can deal with wide-angle contributions untreatable by the PP approximation, and at the same time, target anisotropic signatures can be cleanly extracted. We, for the first time, compute the covariance of the TripoSH decomposition coefficient and the Fisher matrix to forecast the detectability of statistical anisotropy. The resultant expression of the covariance is free from nontrivial mixings between each multipole moment caused by the PP approximation and hence the detectability is fully optimized. Compared with the analysis under the PP approximation, the superiority in detectability is always confirmed, and it is highlighted, especially in the cases that the shot noise level is large and that target statistical anisotropy has a blue-tilted shape in Fourier space. The application of the TripoSH-based analysis to forthcoming all-sky survey data could result in constraints on anisotropy comparable to or tighter than the current cosmic microwave background ones.