Do you want to publish a course? Click here

Neutrino signals from the formation of black hole: a probe of equation of state of dense matter

56   0   0.0 ( 0 )
 Added by Kohsuke Sumiyoshi
 Publication date 2006
  fields Physics
and research's language is English
 Authors K. Sumiyoshi




Ask ChatGPT about the research

The gravitational collapse of a non-rotating, black-hole-forming massive star is studied by neutrino-radiation-hydrodynamical simulations for two different sets of realistic equation of state of dense matter. We show that the event will produce as many neutrinos as the ordinary supernova, but with distinctive characteristics in luminosities and spectra that will be an unmistakable indication of black hole formation. More importantly, the neutrino signals are quite sensitive to the difference of equation of state and can be used as a useful probe into the properties of dense matter. The event will be unique in that they will be shining only by neutrinos (and, possibly, gravitational waves) but not by photons, and hence they should be an important target of neutrino astronomy.



rate research

Read More

83 - Sven Soff 2001
We calculate the kaon HBT radius parameters for high energy heavy ion collisions, assuming a first order phase transition from a thermalized Quark-Gluon-Plasma to a gas of hadrons. At high transverse momenta K_T ~ 1 GeV/c direct emission from the phase boundary becomes important, the emission duration signal, i.e., the R_out/R_side ratio, and its sensitivity to T_c (and thus to the latent heat of the phase transition) are enlarged. Moreover, the QGP+hadronic rescattering transport model calculations do not yield unusual large radii (R_i<9fm). Finite momentum resolution effects have a strong impact on the extracted HBT parameters (R_i and lambda) as well as on the ratio R_out/R_side.
A previously derived three-dimensional effective lattice theory describing the thermodynamics of QCD with heavy quarks in the cold and dense region is extended through order $sim u^5kappa^8$ in the combined character and hopping expansion of the original four-dimensional Wilson action. The systematics of the effective theory is investigated to determine its range of validity in parameter space. We demonstrate the severe cut-off effects due to lattice saturation, which afflict any lattice results at finite baryon density independent of the sign problem or the quality of effective theories, and which have to be removed by continuum extrapolation. We then show how the effective theory can be solved analytically by means of a linked cluster expansion, which is completely unaffected by the sign problem, in quantitative agreement with numerical simulations. As an application, we compute the cold nuclear equation of state of heavy QCD. Our continuum extrapolated result is consistent with a polytropic equation of state for non-relativistic fermions.
Both the mass and radius of the millisecond pulsar PSR J0030+0451 have been inferred via pulse-profile modeling of X-ray data obtained by NASAs NICER mission. In this Letter we study the implications of the mass-radius inference reported for this source by Riley et al. (2019) for the dense matter equation of state (EOS), in the context of prior information from nuclear physics at low densities. Using a Bayesian framework we infer central densities and EOS properties for two choices of high-density extensions: a piecewise-polytropic model and a model based on assumptions of the speed of sound in dense matter. Around nuclear saturation density these extensions are matched to an EOS uncertainty band obtained from calculations based on chiral effective field theory interactions, which provide a realistic description of atomic nuclei as well as empirical nuclear matter properties within uncertainties. We further constrain EOS expectations with input from the current highest measured pulsar mass; together, these constraints offer a narrow Bayesian prior informed by theory as well as laboratory and astrophysical measurements. The NICER mass-radius likelihood function derived by Riley et al. (2019) using pulse-profile modeling is consistent with the highest-density region of this prior. The present relatively large uncertainties on mass and radius for PSR J0030+0451 offer, however, only a weak posterior information gain over the prior. We explore the sensitivity to the inferred geometry of the heated regions that give rise to the pulsed emission, and find a small increase in posterior gain for an alternative (but less preferred) model. Lastly, we investigate the hypothetical scenario of increasing the NICER exposure time for PSR J0030+0451.
We investigate the emergence of strange baryons in the dynamical collapse of a non-rotating massive star to a black hole by the neutrino-radiation hydrodynamical simulations in general relativity. By following the dynamical formation and collapse of nascent proto-neutron star from the gravitational collapse of a 40Msun star adopting a new hyperonic EOS table, we show that the hyperons do not appear at the core bounce but populate quickly at ~0.5-0.7 s after the bounce to trigger the re-collapse to a black hole. They start to show up off center owing to high temperatures and later prevail at center when the central density becomes high enough. The neutrino emission from the accreting proto-neutron star with the hyperonic EOS stops much earlier than the corresponding case with a nucleonic EOS while the average energies and luminosities are quite similar between them. These features of neutrino signal are a potential probe of the emergence of new degrees of freedom inside the black hole forming collapse.
103 - K. Sumiyoshi 2007
We study the black hole formation and the neutrino signal from the gravitational collapse of a non-rotating massive star of 40 Msun. Adopting two different sets of realistic equation of state (EOS) of dense matter, we perform the numerical simulations of general relativistic neutrino-radiation hydrodynamics under the spherical symmetry. We make comparisons of the core bounce, the shock propagation, the evolution of nascent proto-neutron star and the resulting re-collapse to black hole to reveal the influence of EOS. We also explore the influence of EOS on the neutrino emission during the evolution toward the black hole formation. We find that the speed of contraction of the nascent proto-neutron star, whose mass increases fast due to the intense accretion, is different depending on the EOS and the resulting profiles of density and temperature differ significantly. The black hole formation occurs at 0.6-1.3 sec after bounce when the proto-neutron star exceeds its maximum mass, which is crucially determined by the EOS. We find that the average energies of neutrinos increase after bounce because of rapid temperature increase, but at different speeds depending on the EOS. The duration of neutrino emission up to the black hole formation is found different according to the different timing of re-collapse. These characteristics of neutrino signatures are distinguishable from those for ordinary proto-neutron stars in successful core-collapse supernovae. We discuss that a future detection of neutrinos from black-hole-forming collapse will contribute to reveal the black hole formation and to constrain the EOS at high density and temperature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا