Do you want to publish a course? Click here

V1647 Ori: The X-ray Evolution of a Pre-main Sequence Accretion Burst

59   0   0.0 ( 0 )
 Added by Joel Kastner
 Publication date 2006
  fields Physics
and research's language is English
 Authors J. H. Kastner




Ask ChatGPT about the research

We present Chandra X-ray Observatory monitoring observations of the recent accretion outburst displayed by the pre-main sequence (pre-MS) star V1647 Ori. The X-ray observations were obtained over a period beginning prior to outburst onset in late 2003 and continuing through its apparent cessation in late 2005, and demonstrate that the mean flux of the spatially coincident X-ray source closely tracked the near-infrared luminosity of V1647 Ori throughout its eruption. We find negligible likelihood that the correspondence between X-ray and infrared light curves over this period was the result of multiple X-ray flares unrelated to the accretion burst. The recent Chandra data confirm that the X-ray spectrum of V1647 Ori hardened during outburst, relative both to its pre-outburst state and to the X-ray spectra of nearby pre-MS stars in the L1630 cloud. We conclude that the observed changes in the X-ray emission from V1647 Ori over the course of its 2003-2005 eruption were generated by a sudden increase and subsequent decline in its accretion rate. These results for V1647 Ori indicate that the flux of hard X-ray emission from erupting low-mass, pre-MS stars, and the duration and intensity of such eruptions, reflect the degree to which star-disk magnetic fields are reorganized before and during major accretion events.



rate research

Read More

The bulk of X-ray emission from pre-main-sequence (PMS) stars is coronal in origin. We demonstrate herein that stars on Henyey tracks in the Hertzsprung-Russell diagram have lower $log(L_X/L_ast)$, on average, than stars on Hayashi tracks. This effect is driven by the decay of $L_X$ once stars develop radiative cores. $L_X$ decays faster with age for intermediate mass PMS stars, the progenitors of main sequence A-type stars, compared to those of lower mass. As almost all main sequence A-type stars show no detectable X-ray emission, we may already be observing the loss of their coronae during their PMS evolution. Although there is no direct link between the size or mass of the radiative core and $L_X$, the longer stars have spent with partially convective interiors, the weaker their X-ray emission becomes. This conference paper is a synopsis of Gregory, Adams and Davies (2016).
207 - D. Fedele 2009
We present initial result of a large spectroscopic survey aimed at measuring the timescale of mass accretion in young, pre-main-sequence stars in the spectral type range K0 - M5. Using multi-object spectroscopy with VIMOS at the VLT we identified the fraction of accreting stars in a number of young stellar clusters and associations of ages between 1 - 50 Myr. The fraction of accreting stars decreases from ~60% at 1.5 - 2 Myr to ~2% at 10 Myr. No accreting stars are found after 10 Myr at a sensitivity limit of $10^{-11}$ Msun yr-1. We compared the fraction of stars showing ongoing accretion (f_acc) to the fraction of stars with near-to-mid infrared excess (f_IRAC). In most cases we find f_acc < f_IRAC, i.e., mass accretion appears to cease (or drop below detectable level) earlier than the dust is dissipated in the inner disk. At 5 Myr, 95% of the stellar population has stopped accreting material at a rate of > 10^{-11} Msun yr-1, while ~20% of the stars show near-infrared excess emission. Assuming an exponential decay, we measure a mass accretion timescale (t_acc) of 2.3 Myr, compared to a near-to-mid infrared excess timescale (t_IRAC) of 2.9 Myr. Planet formation, and/or migration, in the inner disk might be a viable mechanism to halt further accretion onto the central star on such a short timescale.
We use X-ray and infrared observations to study the properties of three classes of young stars in the Carina Nebula: intermediate-mass (2--8M$_odot$) pre-main sequence stars (IMPS; i.e. intermediate-mass T Tauri stars), late-B and A stars on the zero-age main sequence (AB), and lower-mass T Tauri stars (TTS). We divide our sources among these three sub-classifications and further identify disk-bearing young stellar objects versus diskless sources with no detectable infrared (IR) excess emission using IR (1--8 $mu$m) spectral energy distribution modeling. We then perform X-ray spectral fitting to determine the hydrogen absorbing column density ($N_{rm H}$), absorption-corrected X-ray luminosity ($L_{rm X}$), and coronal plasma temperature ($kT$) for each source. We find that the X-ray spectra of both IMPS and TTS are characterized by similar $kT$ and $N_{rm H}$, and on average $L_{rm X}$/$L_{rm bol} sim4times10^{-4}$. IMPS are systematically more luminous in X-rays (by $sim$0.3 dex) than all other sub-classifications, with median $L_{rm X} = 2.5times10^{31}$ erg s$^{-1}$, while AB stars of similar masses have X-ray emission consistent with TTS companions. These lines of evidence converge on a magneto-coronal flaring source for IMPS X-ray emission, a scaled-up version of the TTS emission mechanism. IMPS therefore provide powerful probes of isochronal ages for the first $sim$10 Myr in the evolution of a massive stellar population, because their intrinsic, coronal X-ray emission decays rapidly after they commence evolving along radiative tracks. We suggest that the most luminous (in both X-rays and IR) IMPS could be used to place empirical constraints on the location of the intermediate-mass stellar birth line.
Low-mass pre-main sequence (PMS) stars are strong and variable X-ray emitters, as has been well established by EINSTEIN and ROSAT observatories. It was originally believed that this emission was of thermal nature and primarily originated from coronal activity (magnetically confined loops, in analogy with Solar activity) on contracting young stars. Broadband spectral analysis showed that the emission was not isothermal and that elemental abundances were non-Solar. The resolving power of the Chandra and XMM X-ray gratings spectrometers have provided the first, tantalizing details concerning the physical conditions such as temperatures, densities, and abundances that characterize the X-ray emitting regions of young star. These existing high resolution spectrometers, however, simply do not have the effective area to measure diagnostic lines for a large number of PMS stars over required to answer global questions such as: how does magnetic activity in PMS stars differ from that of main sequence stars, how do they evolve, what determines the population structure and activity in stellar clusters, and how does the activity influence the evolution of protostellar disks. Highly resolved (R>3000) X-ray spectroscopy at orders of magnitude greater efficiency than currently available will provide major advances in answering these questions. This requires the ability to resolve the key diagnostic emission lines with a precision of better than 100 km/s.
Continuing the attempt to understand the properties of the stellar content in the young cluster NGC 1893 we have carried out a comprehensive multi-wavelength study of the region. The present study focuses on the X-ray properties of T-Tauri Stars (TTSs) in the NGC 1893 region. We found a correlation between the X-ray luminosity, $L_X$, and the stellar mass (in the range 0.2$-$2.0 msun) of TTSs in the NGC 1893 region, similar to those reported in some other young clusters, however the value of the power-law slope obtained in the present study ($sim$ 0.9) for NGC 1893 is smaller than those ($sim$1.4 - 3.6) reported in the case of TMC, ONC, IC 348 and Chameleon star forming regions. However, the slope in the case of Class III sources (Weak line TTSs) is found to be comparable to that reported in the case of NGC 6611 ($sim$ 1.1). It is found that the presence of circumstellar disks has no influence on the X-ray emission. The X-ray luminosity for both CTTSs and WTTSs is found to decrease systematically with age (in the range $sim $ 0.4 Myr - 5 Myr). The decrease of the X-ray luminosity of TTSs (slope $sim$ -0.6) in the case of NGC 1893 seems to be faster than observed in the case of other star-forming regions (slope -0.2 to -0.5). There is indication that the sources having relatively large NIR excess have relatively lower $L_X$ values. TTSs in NGC 1893 do not follow the well established X-ray activity - rotation relation as in the case of main-sequence stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا