Do you want to publish a course? Click here

Pre-main-sequence population in NGC 1893 region: X-ray properties

144   0   0.0 ( 0 )
 Added by Ram Kesh Yadav
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Continuing the attempt to understand the properties of the stellar content in the young cluster NGC 1893 we have carried out a comprehensive multi-wavelength study of the region. The present study focuses on the X-ray properties of T-Tauri Stars (TTSs) in the NGC 1893 region. We found a correlation between the X-ray luminosity, $L_X$, and the stellar mass (in the range 0.2$-$2.0 msun) of TTSs in the NGC 1893 region, similar to those reported in some other young clusters, however the value of the power-law slope obtained in the present study ($sim$ 0.9) for NGC 1893 is smaller than those ($sim$1.4 - 3.6) reported in the case of TMC, ONC, IC 348 and Chameleon star forming regions. However, the slope in the case of Class III sources (Weak line TTSs) is found to be comparable to that reported in the case of NGC 6611 ($sim$ 1.1). It is found that the presence of circumstellar disks has no influence on the X-ray emission. The X-ray luminosity for both CTTSs and WTTSs is found to decrease systematically with age (in the range $sim $ 0.4 Myr - 5 Myr). The decrease of the X-ray luminosity of TTSs (slope $sim$ -0.6) in the case of NGC 1893 seems to be faster than observed in the case of other star-forming regions (slope -0.2 to -0.5). There is indication that the sources having relatively large NIR excess have relatively lower $L_X$ values. TTSs in NGC 1893 do not follow the well established X-ray activity - rotation relation as in the case of main-sequence stars.



rate research

Read More

We present results of multi-epoch (fourteen nights during 2007-2010) $V$-band photometry of the cluster NGC 1893 region to identify photometric variable stars in the cluster. The study identified a total of 53 stars showing photometric variability. The members associated with the region are identified on the basis of spectral energy distribution, $J-H/H-K$ two colour diagram and $V/V-I$ colour-magnitude diagram. The ages and masses of the majority of pre-main-sequence sources are found to be $lesssim$ 5 Myr and in the range 0.5 $lesssim$ $M/M_{odot}$ $lesssim$ 4, respectively. These pre-main-sequence sources hence could be T Tauri stars. We also determined the physical parameters like disk mass and accretion rate from the spectral energy distribution of these T Tauri stars. The periods of majority of the T Tauri stars range from 0.1 to 20 day. The brightness of Classical T Tauri stars is found to vary with larger amplitude in comparison to Weak line T Tauri stars. It is found that the amplitude decreases with increase in mass, which could be due to the dispersal of disks of massive stars.
In this paper we present time series photometry of 104 variable stars in the cluster region NGC 1893. The association of the present variable candidates to the cluster NGC 1893 has been determined by using $(U-B)/(B-V)$ and $(J-H)/(H-K)$ two colour diagrams, and $V/(V-I)$ colour magnitude diagram. Forty five stars are found to be main-sequence variables and these could be B-type variable stars associated with the cluster. We classified these objects as $beta$ Cep, slowly pulsating B stars and new class variables as discussed by Mowlavi et al. (2013). These variable candidates show $sim$0.005 to $sim$0.02 mag brightness variations with periods of $<$ 1.0 d. Seventeen new class variables are located in the $H-R$ diagram between the slowly pulsating B stars and $delta$ Scuti variables. Pulsation could be one of the causes for periodic brightness variations in these stars. The X-ray emission of present main-sequence variables associated with the cluster lies in the saturated region of X-ray luminosity versus period diagram and follows the general trend by Pizzolato et al. (2003).
The Chandra High Energy Transmission Gratings (HETG) Orion Legacy Project (HOLP) is the first comprehensive set of observations of a very young massive stellar cluster which provides high resolution X-ray spectra of very young stars over a wide mass range (0.7 - 2.3 Msun). In this paper, we focus on the six brightest X-ray sources with T Tauri stellar counterparts which are well-characterized at optical and infra-red wavelengths. All stars show column densities which are substantially smaller than expected from optical extinction indicating that the sources are located on the near side of the cluster with respect to the observer as well as that these stars are embedded in more dusty environments. Stellar X-ray luminosities are well above $10^{31}$ erg/s, in some cases exceeding $10^{32}$ erg/s for a substantial amount of time. The stars during these observations show no flares but are persistently bright. The spectra can be well fit with two temperature plasma components of 10 MK and 40 MK, of which the latter dominates the flux by a ratio 6:1 on average. The total EMs range between 3 - 8$times10^{54}$ cm$^{-3}$ and are comparable to active coronal sources. Limits on the forbidden to inter-combination line ratios in the He-Like K-shell lines show that we observe a predominantely optically thin plasma with electron densities below $10^{12}$ cm$^{-3}$. Observed abundances compare well with active coronal sources underlying the coronal nature of these sources. The surface flux in this sample of 0.6 to 2.3 Msun classical T Tauri stars shows that coronal activity and possibly coronal loop size increase significantly between ages 0.1 to 10 Myrs.
Getman et al. (2021) reports the discovery, energetics, frequencies, and effects on environs of $>1000$ X-ray super-flares with X-ray energies $E_X sim 10^{34}-10^{38}$~erg from pre-main sequence (PMS) stars identified in the $Chandra$ MYStIX and SFiNCs surveys. Here we perform detailed plasma evolution modeling of $55$ bright MYStIX/SFiNCs super-flares from these events. They constitute a large sample of the most powerful stellar flares analyzed in a uniform fashion. They are compared with published X-ray super-flares from young stars in the Orion Nebula Cluster, older active stars, and the Sun. Several results emerge. First, the properties of PMS X-ray super-flares are independent of the presence or absence of protoplanetary disks inferred from infrared photometry, supporting the solar-type model of PMS flaring magnetic loops with both footpoints anchored in the stellar surface. Second, most PMS super-flares resemble solar long duration events (LDEs) that are associated with coronal mass ejections. Slow rise PMS super-flares are an interesting exception. Third, strong correlations of super-flare peak emission measure and plasma temperature with the stellar mass are similar to established correlations for the PMS X-ray emission composed of numerous smaller flares. Fourth, a new correlation of loop geometry is linked to stellar mass; more massive stars appear to have thicker flaring loops. Finally, the slope of a long-standing relationship between the X-ray luminosity and magnetic flux of various solar-stellar magnetic elements appears steeper in PMS super-flares than for solar events.
We use X-ray and infrared observations to study the properties of three classes of young stars in the Carina Nebula: intermediate-mass (2--8M$_odot$) pre-main sequence stars (IMPS; i.e. intermediate-mass T Tauri stars), late-B and A stars on the zero-age main sequence (AB), and lower-mass T Tauri stars (TTS). We divide our sources among these three sub-classifications and further identify disk-bearing young stellar objects versus diskless sources with no detectable infrared (IR) excess emission using IR (1--8 $mu$m) spectral energy distribution modeling. We then perform X-ray spectral fitting to determine the hydrogen absorbing column density ($N_{rm H}$), absorption-corrected X-ray luminosity ($L_{rm X}$), and coronal plasma temperature ($kT$) for each source. We find that the X-ray spectra of both IMPS and TTS are characterized by similar $kT$ and $N_{rm H}$, and on average $L_{rm X}$/$L_{rm bol} sim4times10^{-4}$. IMPS are systematically more luminous in X-rays (by $sim$0.3 dex) than all other sub-classifications, with median $L_{rm X} = 2.5times10^{31}$ erg s$^{-1}$, while AB stars of similar masses have X-ray emission consistent with TTS companions. These lines of evidence converge on a magneto-coronal flaring source for IMPS X-ray emission, a scaled-up version of the TTS emission mechanism. IMPS therefore provide powerful probes of isochronal ages for the first $sim$10 Myr in the evolution of a massive stellar population, because their intrinsic, coronal X-ray emission decays rapidly after they commence evolving along radiative tracks. We suggest that the most luminous (in both X-rays and IR) IMPS could be used to place empirical constraints on the location of the intermediate-mass stellar birth line.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا