Do you want to publish a course? Click here

VLT/UVES spectroscopy of Wray 977, the hypergiant companion to the X-ray pulsar GX301-2

74   0   0.0 ( 0 )
 Added by Lex Kaper
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Model atmosphere fits to high-resolution optical spectra of Wray 977 confirm the B hypergiant classification of the massive companion to the X-ray pulsar GX301-2. The models give a radius of 62 Rsun, an effective temperature of 18,100 K and a luminosity of 5 x 10^^5 Lsun. The deduced mass-loss rate and terminal velocity of the stellar wind are 10^^-5 Msun/yr and 305 km/s, respectively. The interstellar Na I D absorption indicates that Wray 977 is located behind the first intersection with the Sagittarius-Carina spiral arm (1-2.5 kpc) and probably belongs to the stellar population of the Norma spiral arm at a distance of 3-4 kpc. The spectra obtained with UVES on the Very Large Telescope (VLT) cover a full orbit of the system, including periastron passage, from which we derive the radial-velocity curve of the B hypergiant. The measured radial-velocity amplitude is 10 +/-3 km/s yielding a mass ratio q = 0.046 +/- 0.014. The absence of an X-ray eclipse results in a lower limit to the mass of Wray 977 of 39 Msun. An upper limit of 53 Msun is derived for the mass of Wray 977 adopting a maximum neutron star mass of 2.5 Msun. The ``spectroscopic mass of Wray 977 is 43 +/- 10 Msun, consistent with the range in mass derived from the binarity constraints. The mass of the neutron star is 1.85 +/- 0.6 Msun. Time series of spectral lines formed in the dense stellar wind indicate the presence of a gas stream trailing the neutron star in its orbit. The long-term behaviour of the H alpha equivalent width exhibits strong variations in wind strength; the sampling of the data is insufficient to conclude whether a relation exists between wind mass-loss rate and pulsar spin period.



rate research

Read More

We present preliminary results on our campaign of observations of the X-ray binary pulsar GX301-2. BeppoSAX observed this source six times in January/February 1998: at the periastron and apoastron, and at other four, intermediate, orbital phases. We present preliminary results on the GX301-2 spectral and temporal behaviour as a function of orbital phase.
The hierarchical triple system PSR J0337+1715 offers an unprecedented laboratory to study secular evolution of interacting systems and to explore the complicated mass-transfer history that forms millisecond pulsars and helium-core white dwarfs. The latter in particular, however, requires knowledge of the properties of the individual components of the system. Here we present precise optical spectroscopy of the inner companion in the PSR J0337+1715 system. We confirm it as a hot, low-gravity DA white dwarf with Teff=15,800+/-100 K and log(g)=5.82+/-0.05. We also measure an inner mass ratio of 0.1364+/-0.0015, entirely consistent with that inferred from pulsar timing, and a systemic radial velocity of 29.7+/-0.3 km/s. Combined with the mass (0.19751 Msun) determined from pulsar timing, our measurement of the surface gravity implies a radius of 0.091+/-0.005 Rsun; combined further with the effective temperature and extinction, the photometry implies a distance of 1300+/-80 pc. The high temperature of the companion is somewhat puzzling: with current models, it likely requires a recent period of unstable hydrogen burning, and suggests a surprisingly short lifetime for objects at this phase in their evolution. We discuss the implications of these measurements in the context of understanding the PSR J0337+1715 system, as well as of low-mass white dwarfs in general.
104 - V. DElia , F. Fiore , E. Meurs 2006
We analyze high resolution spectroscopic observations of the optical afterglow of GRB050730, obtained with UVES@VLT about hours after the GRB trigger. The spectrum shows that the ISM of the GRB host galaxy at z = 3.967 is complex, with at least five components contributing to the main absorption system. We detect strong CII*, SiII*, OI* and FeII* fine structure absorption lines associated to the second and third component. For the first three components we derive information on the relative distance from the site of the GRB explosion. Component 1, which has the highest redshift, does not present any fine structure nor low ionization lines; it only shows very high ionization features, such as CIV and OVI, suggesting that this component is very close to the GRB site. From the analysis of low and high ionization lines and fine structure lines, we find evidences that the distance of component 2 from the site of the GRB explosion is 10-100 times smaller than that of component 3. We evaluated the mean metallicity of the z=3.967 system obtaining values about 0.01 of the solar metallicity or less. However, this should not be taken as representative of the circumburst medium, since the main contribution to the hydrogen column density comes from the outer regions of the galaxy while that of the other elements presumably comes from the ISM closer to the GRB site. Furthermore, difficulties in evaluating dust depletion correction can modify significantly these values. The mean [C/Fe] ratio agrees well with that expected by single star-formation event models. Interestingly the [C/Fe] of component 2 is smaller than that of component 3, in agreement with GRB dust destruction scenarios, if component 2 is closer than component 3 to the GRB site.
93 - A.Lutovinov 2016
We report the results of the monitoring campaign of the transient X-ray pulsar SMC X-2 performed with the Swift/XRT telescope over the period of 2015 September - 2016 January during the Type II outburst. During this event, the bolometric luminosity of the source ranged from $simeq10^{39}$ down to several$times10^{34}$ erg/s. Moreover, we discovered its dramatic drop by a factor of more than 100 below the limiting value of $L_{rm lim}simeq4times10^{36}$ erg/s, which can be interpreted as a transition to the propeller regime. These measurements make SMC X-2 the sixth pulsating X-ray source where such a transition is observed and allow us to estimate the magnetic field of the neutron star in the system $Bsimeq3times10^{12}$ G, which is in agreement with independent results of the spectral analysis.
The hot subdwarf HD 49798 has an X-ray emitting compact companion with a spin-period of 13.2 s and a dynamically measured mass of 1.28+/-0.05 M_sun, consistent with either a neutron star or a white dwarf. Using all the available XMM-Newton and Swift observations of this source, we could perform a phase-connected timing analysis extending back to the ROSAT data obtained in 1992. We found that the pulsar is spinning up at a rate of (2.15+/-0.05)x10^{-15} s/s. This result is best interpreted in terms of a neutron star accreting from the wind of its subdwarf companion, although the remarkably steady period derivative over more than 20 years is unusual in wind-accreting neutron stars. The possibility that the compact object is a massive white dwarf accreting through a disk cannot be excluded, but it requires a larger distance and/or properties of the stellar wind of HD 49798 different from those derived from the modelling of its optical/UV spectra.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا