No Arabic abstract
The hierarchical triple system PSR J0337+1715 offers an unprecedented laboratory to study secular evolution of interacting systems and to explore the complicated mass-transfer history that forms millisecond pulsars and helium-core white dwarfs. The latter in particular, however, requires knowledge of the properties of the individual components of the system. Here we present precise optical spectroscopy of the inner companion in the PSR J0337+1715 system. We confirm it as a hot, low-gravity DA white dwarf with Teff=15,800+/-100 K and log(g)=5.82+/-0.05. We also measure an inner mass ratio of 0.1364+/-0.0015, entirely consistent with that inferred from pulsar timing, and a systemic radial velocity of 29.7+/-0.3 km/s. Combined with the mass (0.19751 Msun) determined from pulsar timing, our measurement of the surface gravity implies a radius of 0.091+/-0.005 Rsun; combined further with the effective temperature and extinction, the photometry implies a distance of 1300+/-80 pc. The high temperature of the companion is somewhat puzzling: with current models, it likely requires a recent period of unstable hydrogen burning, and suggests a surprisingly short lifetime for objects at this phase in their evolution. We discuss the implications of these measurements in the context of understanding the PSR J0337+1715 system, as well as of low-mass white dwarfs in general.
We present time-resolved optical spectroscopy of the `redback binary millisecond pulsar system PSR J1023+0038 during both its radio pulsar (2009) and accretion disc states (2014 and 2016). We provide observational evidence for the companion star being heated during the disc-state. We observe a spectral type change along the orbit, from G5 to F6 at the secondary stars superior and inferior conjunction, respectively, and find that the corresponding irradiating luminosity can be powered by the high energy accretion luminosity or the spin-down luminosity of the neutron star. We determine the secondary stars radial velocity semi-amplitude from the metallic (primarily Fe and Ca) and Halpha absorption lines during these different states. The metallic and Halpha radial velocity semi-amplitude determined from the 2009 pulsar-state observations allows us to constrain the secondary stars true radial velocity K_2=276.3+/-5.6 km/s and the binary mass ratio q=0.137+/-0.003. By comparing the observed metallic and Halpha absorption-line radial velocity semi-amplitudes with model predictions, we can explain the observed semi-amplitude changes during the pulsar-state and during the pulsar/disc-state transition as being due to different amounts of heating and the presence of an accretion disc, respectively.
By using XSHOOTER spectra acquired at the ESO Very Large Telescope, we have studied the surface chemical composition of the companion star to the binary millisecond pulsar PSR J1740-5340 in the globular cluster NGC 6397. The measured abundances of Fe, Mg, Al and Na confirm that the star belongs to the cluster. On the other hand, the measured surface abundance of nitrogen ([N/Fe]=+0.53 +- 0.15 dex) combined with the carbon upper limit ([C/Fe] <-2 dex) previously obtained from UVES spectra allow us to put severe constraints on its nature, strongly suggesting that the pulsar companion is a deeply peeled star. In fact, the comparison with theoretical stellar models indicates that the matter currently observed at the surface of this star has been processed by the hydrogen-burning CN-cycle at equilibrium. In turn, this evidence suggests that the pulsar companion is a low mass (~0.2 Msun) remnant star, descending from a ~0.8 Msun progenitor which lost ~70-80 % of its original material because of mass transfer activity onto the pulsar.
The pulsar PSR J1756$-$2251 resides in a relativistic double neutron star (DNS) binary system with a 7.67-hr orbit. We have conducted long-term precision timing on more than 9 years of data acquired from five telescopes, measuring five post-Keplerian parameters. This has led to several independent tests of general relativity (GR), the most constraining of which shows agreement with the prediction of GR at the 4% level. Our measurement of the orbital decay rate disagrees with that predicted by GR, likely due to systematic observational biases. We have derived the pulsar distance from parallax and orbital decay measurements to be 0.73$_{-0.24}^{+0.60}$ kpc (68%) and < 1.2 kpc (95% upper limit), respectively; these are significantly discrepant from the distance estimated using Galactic electron density models. We have found the pulsar mass to be 1.341$pm$0.007 M$_odot$, and a low neutron star (NS) companion mass of 1.230$pm$0.007 M$_odot$. We also determined an upper limit to the spin-orbit misalignment angle of 34{deg} (95%) based on a system geometry fit to long-term profile width measurements. These and other observed properties have led us to hypothesize an evolution involving a low mass loss, symmetric supernova progenitor to the second-formed NS companion, as is thought to be the case for the double pulsar system PSR J0737$-$3039A/B. This would make PSR J1756$-$2251 the second compact binary system providing concrete evidence for this type of NS formation channel.
We present 35 ks Chandra ACIS observations of the 42 Myr old radio pulsar PSR B1451-68. A point source is detected 0.32 +/- 0.73 from the expected radio pulsar position. It has ~200 counts in the 0.3-8 keV energy range. We identify this point source as the X-ray counterpart of the radio pulsar. PSR B1451-68 is located close to a 2MASS point source, for which we derive 7% as the upper limit on the flux contribution to the measured pulsar X-ray flux. The pulsar spectrum can be described by either a power-law model with photon index Gamma=2.4 (+0.4/-0.3) and a unrealistically high absorbing column density N(H)= (2.5 (+1.2/-1.3)) * 10^(21) cm^-2, or by a combination of a kT=0.35 (+0.12/-0.07) keV blackbody and a Gamma = 1.4 +/- 0.5 power-law component for N(H)[DM]= 2.6 * 10^(20) cm^-2, estimated from the pulsar dispersion measure. At the parallactic, Lutz-Kelker bias corrected distance of 480 pc, the non-thermal X-ray luminosities in the 0.3-8 keV energy band are either Lx(nonth)= (11.3 +/- 1.7) * 10^(29) erg/s or Lx(nonth)= (5.9 (+4.9/-5.0)) * 10^(29) erg/s, respectively. This corresponds to non-thermal X-ray efficiencies of either eta(nonth)= Lx(nonth) / (dE/dt) ~ 0.005 or 0.003, respectively.
PSR J1906+0746 is a young pulsar in the relativistic binary with the second-shortest known orbital period, of 3.98 hours. We here present a timing study based on five years of observations, conducted with the 5 largest radio telescopes in the world, aimed at determining the companion nature. Through the measurement of three post-Keplerian orbital parameters we find the pulsar mass to be 1.291(11) M_sol, and the companion mass 1.322(11) M_sol respectively. These masses fit well in the observed collection of double neutron stars, but are also compatible with other white dwarfs around young pulsars such as J1906+0746. Neither radio pulsations nor dispersion-inducing outflows that could have further established the companion nature were detected. We derive an HI-absorption distance, which indicates that an optical confirmation of a white dwarf companion is very challenging. The pulsar is fading fast due to geodetic precession, limiting future timing improvements. We conclude that young pulsar J1906+0746 is likely part of a double neutron star, or is otherwise orbited by an older white dwarf, in an exotic system formed through two stages of mass transfer.