Do you want to publish a course? Click here

PSF reconstruction for NAOS-CONICA

60   0   0.0 ( 0 )
 Added by Yann Clenet
 Publication date 2006
  fields Physics
and research's language is English
 Authors Yann Clenet




Ask ChatGPT about the research

Adaptive optics (AO) allows one to derive the point spread function (PSF) simultaneously to the science image, which is a major advantage in post-processing tasks such as astrometry/photometry or deconvolution. Based on the algorithm of citet{veran97}, PSF reconstruction has been developed for four different AO systems so far: PUEO, ALFA, Lick-AO and Altair. A similar effort is undertaken for NAOS/VLT in a collaboration between the group PHASE (Onera and Observatoire de Paris/LESIA) and ESO. In this paper, we first introduce two new algorithms that prevent the use of the so-called $U_{ij}$ functions to: (1) avoid the storage of a large amount of data (for both new algorithms), (2) shorten the PSF reconstruction computation time (for one of the two) and (3) provide an estimation of the PSF variability (for the other one). We then identify and explain issues in the exploitation of real-time Shack-Hartmann (SH) data for PSF reconstruction, emphasising the large impact of thresholding in the accuracy of the phase residual estimation. Finally, we present the data provided by the NAOS real-time computer (RTC) to reconstruct PSF ({em (1)} the data presently available, {em (2)} two NAOS software modifications that would provide new data to increase the accuracy of the PSF reconstruction and {em (3)} the tests of these modifications) and the PSF reconstruction algorithms we are developing for NAOS on that basis.



rate research

Read More

54 - T. Ott , R. Schoedel , R. Genzel 2003
We report on the first results obtained using adaptive optics measurements of the Galactic Centre done with NAOS/CONICA.
We present high-resolution observations of Henize 2-10 in Ks (2.2um), L (3.8um), M (4.8um) bands. These allow for the first time to track accurately the structures at the heart of the galaxy from the optical to the radio. All radio knots previously observed can now be associated with L and Ks emitting regions. This implies a revision of their physical nature. Instead of highly extinguished ultra-dense HII regions, we propose that two of the 5 radio knots are either supernova remnants or normal HII regions, while the remaining three are bona fide ultra-dense HII regions, although less obscured than was previously thought.
61 - Y. Clenet 2003
We report on Galactic Center L-band observations made during NAOS/CONICA Science Verification. Colors of the inner 2 stars reveal an infrared excess of S2, the closest star to the black hole, that could sign the first thermal infrared detection of Sgr A*. A multi-wavelength maximum likelihood analysis has allowed us to eliminate all but two of the candidates for gravitational lensing proposed by Alexander (2001). Our observations of the thin and intersecting structures of the Northern Arm could trace several shocks heating the neighbooring dust rather than a stream of matter in orbit around the central mass as previously thought.
In this work, we present a novel centroiding method based on Fourier space Phase Fitting(FPF) for Point Spread Function(PSF) reconstruction. We generate two sets of simulations to test our method. The first set is generated by GalSim with elliptical Moffat profile and strong anisotropy which shifts the center of the PSF. The second set of simulation is drawn from CFHT i band stellar imaging data. We find non-negligible anisotropy from CFHT stellar images, which leads to $sim$0.08 scatter in unit of pixels using polynomial fitting method Vakili and Hogg (2016). And we apply FPF method to estimate the centroid in real space, this scatter reduces to $sim$0.04 in SNR=200 CFHT like sample. In low SNR (50 and 100) CFHT like samples, the background noise dominates the shifting of the centroid, therefore the scatter estimated from different methods are similar. We compare polynomial fitting and FPF using GalSim simulation with optical anisotropy. We find that in all SNR$sim$50, 100 and 200) samples, FPF performs better than polynomial fitting by a factor of $sim$3. In general, we suggest that in real observations there are anisotropy which shift the centroid, and FPF method is a better way to accurately locate it.
The point spread function reconstruction (PSF-R) capability is a deliverable of the MICADO@ESO-ELT project. The PSF-R team works on the implementation of the instrument software devoted to reconstruct the point spread function (PSF), independently of the science data, using adaptive optics (AO) telemetry data, both for Single Conjugate (SCAO) and Multi-Conjugate Adaptive Optics (MCAO) mode of the MICADO camera and spectrograph. The PSF-R application will provide reconstructed PSFs through an archive querying system to restore the telemetry data synchronous to each science frame that MICADO will generate. Eventually, the PSF-R software will produce the output according to user specifications. The PSF-R service will support the state-of-the-art scientific analysis of the MICADO imaging and spectroscopic data.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا