No Arabic abstract
The taxonomy of optical emission detected during the critical first few minutes after the onset of a gamma-ray burst (GRB) defines two broad classes: prompt optical emission correlated with prompt gamma-ray emission, and early optical afterglow emission uncorrelated with the gamma-ray emission. The standard theoretical interpretation attributes prompt emission to internal shocks in the ultra-relativistic outflow generated by the internal engine; early afterglow emission is attributed to shocks generated by interaction with the surrounding medium. Here we report on observations of a bright GRB that, for the first time, clearly show the temporal relationship and relative strength of the two optical components. The observations indicate that early afterglow emission can be understood as reverberation of the energy input measured by prompt emission. Measurements of the early afterglow reverberations therefore probe the structure of the environment around the burst, whereas the subsequent response to late-time impulsive energy releases reveals how earlier flaring episodes have altered the jet and environment parameters. Many GRBs are generated by the death of massive stars that were born and died before the Universe was ten per cent of its current age, so GRB afterglow reverberations provide clues about the environments around some of the first stars.
The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure contemporaneous and early afterglow optical emission from gamma-ray bursts (GRBs). The ROTSE-I telescope array has been fully automated and responding to burst alerts from the GRB Coordinates Network since March 1998, taking prompt optical data for 30 bursts in its first year. We will briefly review observations of GRB990123 which revealed the first detection of an optical burst occurring during the gamma-ray emission, reaching 9th magnitude at its peak. In addition, we present here preliminary optical results for seven other gamma-ray bursts. No other optical counterparts were seen in this analysis, and the best limiting sensitivities are m(V) > 13.0 at 14.7 seconds after the gamma-ray rise, and m(V) > 16.4 at 62 minutes. These are the most stringent limits obtained for GRB optical counterpart brightness in the first hour after the burst. This analysis suggests that there is not a strong correlation between optical flux and gamma-ray emission.
The prompt optical emission that arrives with gamma-rays from a cosmic gamma-ray burst (GRB) is a signature of the engine powering the burst, the properties of the ultra-relativistic ejecta of the explosion, and the ejectas interactions with the surroundings. Until now, only GRB 990123 had been detected at optical wavelengths during the burst phase. Its prompt optical emission was variable and uncorrelated with the prompt gamma-ray emission, suggesting that the optical emission was generated by a reverse shock arising from the ejectas collision with the surrounding material. Here we report prompt optical emission from GRB 041219a. It is variable and correlated with the prompt gamma-rays, indicating a common origin for the optical light and the gamma-rays. Within the context of the standard fireball model of GRBs, we attribute this new optical component to internal shocks driven into the burst ejecta by variations of the inner engine. The correlated optical emission is a direct probe of the jet isolated from the medium. The timing of the uncorrelated optical emission is strongly dependent on the nature of the medium.
The early X-ray afterglow of gamma-ray bursts revealed by Swift carried many surprises. We focus in this paper on the plateau phase whose origin remains highly debated. We confront several newly discovered correlations between prompt and afterglow quantities (isotropic emitted energy in gamma-rays, luminosity and duration of the plateau) to several models proposed for the origin of plateaus in order to check if they can account for these observed correlations. We first show that the scenario of plateau formation by energy injection into the forward shock leads to an efficiency crisis for the prompt phase and therefore study two possible alternatives: the first one still takes place within the framework of the standard forward shock model but allows for a variation of the microphysics parameters to reduce the radiative efficiency at early times; in the second scenario the early afterglow results from a long-lived reverse shock. Its shape then depends on the distribution of energy as a function of Lorentz factor in the ejecta. In both cases, we first present simple analytical estimates of the plateau luminosity and duration and then compute detailed light curves. In the two considered scenarios we find that plateaus following the observed correlations can be obtained under the condition that specific additional ingredients are included. In the forward shock scenario, the preferred model supposes a wind external medium and a microphysics parameter epsilon_e that first varies as n^{- u} (n being the external density), with u~1 to get a flat plateau, before staying constant below a critical density n_0. To produce a plateau in the reverse shock scenario the ejecta must contain a tail of low Lorentz factor with a peak of energy deposition at Gamma >~ 10.
Correlation studies of prompt and afterglow emissions from gamma-ray bursts (GRBs) between different spectral bands has been difficult to do in the past because few bursts had comprehensive and intercomparable afterglow measurements. In this paper we present a large and uniform data set for correlation analysis based on bursts detected by the Swift mission. For the first time, short and long bursts can be analyzed and compared. It is found for both classes that the optical, X-ray and gamma-ray emissions are linearly correlated, but with a large spread about the correlation line; stronger bursts tend to have brighter afterglows, and bursts with brighter X-ray afterglow tend to have brighter optical afterglow. Short bursts are, on average, weaker in both prompt and afterglow emissions. No short bursts are seen with extremely low optical to X-ray ratio as occurs for dark long bursts. Although statistics are still poor for short bursts, there is no evidence yet for a subgroup of short bursts with high extinction as there is for long bursts. Long bursts are detected in the dark category at the same fraction as for pre-Swift bursts. Interesting cases are discovered of long bursts that are detected in the optical, and yet have low enough optical to X-ray ratio to be classified as dark. For the prompt emission, short and long bursts have different average tracks on flux vs fluence plots. In Swift, GRB detections tend to be fluence limited for short bursts and flux limited for long events.
The prompt emission of gamma-ray bursts (GRBs) is widely thought to be radiation from accelerated electrons, but an appreciably larger amount of energy could be carried by accelerated protons, particularly if GRBs are the sources of ultra-high-energy cosmic rays (UHECRs). We model the expected photon spectra for such proton-dominated GRBs in the internal shock scenario through Monte Carlo simulations, accounting for various processes related to high-energy electrons and protons. Besides proton and muon synchrotron components, emission from photomeson-induced secondary pair cascades becomes crucial, generally enhancing the GeV-TeV and/or eV-keV photons and offering a signature of UHE protons. In some cases, it can overwhelm the primary electron component and result in GRBs peaking in the 10 MeV - 1 GeV range, which may be relevant to some bursts discussed in a recent re-analysis of EGRET TASC data. The dependence of the spectra on key quantities such as the bulk Lorentz factor, magnetic field and proton-to-electron ratio is nontrivial due to the nonlinear nature of cascading and the interplay of electron- and proton-induced components. Observations by {it Fermi}, ground-based telescopes and other facilities should test these expectations and provide critical constraints on the proton acceleration efficiency.