Do you want to publish a course? Click here

The prompt-early afterglow connection in gamma-ray bursts: implications for the early afterglow physics

169   0   0.0 ( 0 )
 Added by Romain Hascoet
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The early X-ray afterglow of gamma-ray bursts revealed by Swift carried many surprises. We focus in this paper on the plateau phase whose origin remains highly debated. We confront several newly discovered correlations between prompt and afterglow quantities (isotropic emitted energy in gamma-rays, luminosity and duration of the plateau) to several models proposed for the origin of plateaus in order to check if they can account for these observed correlations. We first show that the scenario of plateau formation by energy injection into the forward shock leads to an efficiency crisis for the prompt phase and therefore study two possible alternatives: the first one still takes place within the framework of the standard forward shock model but allows for a variation of the microphysics parameters to reduce the radiative efficiency at early times; in the second scenario the early afterglow results from a long-lived reverse shock. Its shape then depends on the distribution of energy as a function of Lorentz factor in the ejecta. In both cases, we first present simple analytical estimates of the plateau luminosity and duration and then compute detailed light curves. In the two considered scenarios we find that plateaus following the observed correlations can be obtained under the condition that specific additional ingredients are included. In the forward shock scenario, the preferred model supposes a wind external medium and a microphysics parameter epsilon_e that first varies as n^{- u} (n being the external density), with u~1 to get a flat plateau, before staying constant below a critical density n_0. To produce a plateau in the reverse shock scenario the ejecta must contain a tail of low Lorentz factor with a peak of energy deposition at Gamma >~ 10.



rate research

Read More

We study the observed correlations between the duration and luminosity of the early afterglow plateau and the isotropic gamma-ray energy release during the prompt phase. We discuss these correlations in the context of two scenarios for the origin of the plateaus. In the first one the afterglow is made by the forward shock and the plateau results from variations of the microphysics parameters while in the second one the early afterglow is made by a long-lived reverse shock propagating in a low Lorentz factor tail of the ejecta.
151 - R. Hascoet 2013
The peak time of optical afterglow may be used as a proxy to constrain the Lorentz factor Gamma of the gamma-ray burst (GRB) ejecta. We revisit this method by including bursts with optical observations that started when the afterglow flux was already decaying; these bursts can provide useful lower limits on Gamma. Combining all analyzed bursts in our sample, we find that the previously reported correlation between Gamma and the burst luminosity L_gamma does not hold. However, the data clearly shows a lower bound Gamma_min which increases with L_gamma. We suggest an explanation for this feature: explosions with large jet luminosities and Gamma < Gamma_min suffer strong adiabatic cooling before their radiation is released at the photosphere; they produce weak bursts, barely detectable with present instruments. To test this explanation we examine the effect of adiabatic cooling on the GRB location in the L_gamma - Gamma plane using a Monte Carlo simulation of the GRB population. Our results predict detectable on-axis orphan afterglows. We also derive upper limits on the density of the ambient medium that decelerates the explosion ejecta. We find that the density in many cases is smaller than expected for stellar winds from normal Wolf-Rayet progenitors. The burst progenitors may be peculiar massive stars with weaker winds or there might exist a mechanism that reduces the stellar wind a few years before the explosion.
We present a comprehensive statistical analysis of Swift X-ray light-curves of Gamma-Ray Bursts (GRBs), with more than 650 GRBs. Two questions drive this effort: (1) Does the X-ray emission retain any kind of memory of the prompt phase? (2) Where is the dividing line between long and short GRBs? We show that short GRBs decay faster, are less luminous and less energetic than long GRBs, but are interestingly characterized by very similar intrinsic absorption. Our analysis reveal the existence of a number of relations that link the X-ray to prompt parameters in long GRBs; short GRBs are outliers of the majority of these 2-parameter relations. Here we concentrate on a 3-parameter (E_pk-Egamma,iso-E_X,iso) scaling that is shared by the GRB class as a whole (short GRBs, long GRBs and X-ray Flashes -XRFs): interpreted in terms of emission efficiency, this scaling may imply that GRBs with high $E_{rm{pk}}$ are more efficient during their prompt emission.
We present a comprehensive statistical analysis of Swift X-ray light-curves of Gamma-Ray Bursts (GRBs) collecting data from more than 650 GRBs discovered by Swift and other facilities. The unprecedented sample size allows us to constrain the REST FRAME X-ray properties of GRBs from a statistical perspective, with particular reference to intrinsic time scales and the energetics of the different light-curve phases in a common rest-frame 0.3-30 keV energy band. Temporal variability episodes are also studied and their properties constrained. Two fundamental questions drive this effort: i) Does the X-ray emission retain any kind of memoryof the prompt gamma-ray phase? ii) Where is the dividing line between long and short GRB X-ray properties? We show that short GRBs decay faster, are less luminous and less energetic than long GRBs in the X-rays, but are interestingly characterized by similar intrinsic absorption. We furthermore reveal the existence of a number of statistically significant relations that link the X-ray to prompt gamma-ray parameters in long GRBs; short GRBs are outliers of the majority of these 2-parameter relations. However and more importantly, we report on the existence of a universal 3-parameter scaling that links the X-ray and the gamma-ray energy to the prompt spectral peak energy of BOTH long and short GRBs: E_{X,iso}propto E_{gamma,iso}^{1.00pm 0.06}/E_{pk}^{0.60pm 0.10}.
127 - E. S. Gorbovskoy 2011
We present results of the prompt, early, and afterglow optical observations of five gamma-ray bursts, GRBs 100901A, 100902A, 100905A, 100906A, and 101020A, made with the Mobile Astronomical System of TElescope-Robots in Russia (MASTER-II net), the 1.5-m telescope of Sierra-Nevada Observatory, and the 2.56-m Nordic Optical Telescope. For two sources, GRB 100901A and GRB 100906A, we detected optical counterparts and obtained light curves starting before cessation of gamma-ray emission, at 113 s and 48 s after the trigger, respectively. Observations of GRB 100906A were conducted with two polarizing filters. Observations of the other three bursts gave the upper limits on the optical flux; their properties are briefly discussed. More detailed analysis of GRB 100901A and GRB 100906A supplemented by Swift data provides the following results and indicates different origins of the prompt optical radiation in the two bursts. The light curves patterns and spectral distributions suggest a common production site of the prompt optical and high-energy emission in GRB 100901A. Results of spectral fits for GRB 100901A in the range from the optical to X-rays favor power-law energy distributions with similar values of the optical extinction in the host galaxy. GRB 100906A produced a smoothly peaking optical light curve suggesting that the prompt optical radiation in this GRB originated in a front shock. This is supported by a spectral analysis. We have found that the Amati and Ghirlanda relations are satisfied for GRB 100906A. An upper limit on the value of the optical extinction on the host of GRB 100906A is obtained.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا