Do you want to publish a course? Click here

Star formation through gravitational collapse and competitive accretion

61   0   0.0 ( 0 )
 Added by Ian Bonnell
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

Competitive accretion, a process to explain the origin of the IMF, occurs when stars in a common gravitational potential accrete from a distributed gaseous component. We show that concerns recently raised on the efficiency of competitive accretion are incorrect as they use globally averaged properties which are inappropriate for the detailed physics of a forming stellar cluster. A full treatment requires a realistic treatment of the cluster potential, the distribution of turbulent velocities and gas densities. Accreting gas does not travel at the global virial velocity of the system due to the velocity-sizescale relation inherent in turbulent gas and due to the lower velocity dispersion of small-N clusters in which much of the accretion occurs. Stars located in the gas-rich centres of such systems initially accrete from low relative velocity gas attaining larger masses before needing to accrete the higher velocity gas. Stars not in the centres of such potentials, or that enter the cluster later when the velocity dispersion is higher, do not accrete significantly and thus retain their low-masses. In competitive accretion, most stars do not continue to accrete significantly such that their masses are set from the fragmentation process. It is the few stars which continue to accrete that become higher-mass stars. Competitive accretion is therefore likely to be responsible for the formation of higher-mass stars and can explain the mass distribution, mass segregation and binary frequency of these stars. Global kinematics of competitive accretion models include large-scale mass infall, with mean inflow velocities of order 0.5 km/s at scales of 0.5 pc, but infall signatures are likely to be confused by the large tangential velocities and the velocity dispersion present.



rate research

Read More

343 - Mark R. Krumholz 2005
There are now two dominant models of how stars form: gravitational collapse theory holds that star-forming molecular clumps, typically hundreds to thousands of solar masses in mass, fragment into gaseous cores that subsequently collapse to make individual stars or small multiple systems. In contrast, competitive accretion theory suggests that at birth all stars are much smaller than the typical stellar mass (~0.5 solar masses), and that final stellar masses are determined by the subsequent accretion of unbound gas from the clump. Competitive accretion models explain brown dwarfs and free-floating planets as protostars ejected from star-forming clumps before accreting much mass, predicting that they should lack disks, have high velocity dispersions, and form more frequently in denser clumps. They also predict that mean stellar mass should vary within the Galaxy. Here we derive a simple estimate for the rate of competitive accretion as a function of the star-forming environment, based partly on simulations, and determine in what types of environments competitive accretion can occur. We show that no observed star-forming region produces significant competitive accretion, and that simulations that show competitive accretion do so because their properties differ from those determined by observation. Our result shows that stars form by gravitational collapse, and explains why observations have failed to confirm predictions of the competitive accretion scenario.
We discuss the effects of the magnetic field observed in molecular clouds on the process of star formation, concentrating on the phase of gravitational collapse of low-mass dense cores, cradles of sunlike stars. We summarize recent analytic work and numerical simulations showing that a substantial level of magnetic field diffusion at high densities has to occur in order to form rotationally supported disks. Furthermore, newly formed accretion disks are threaded by the magnetic field dragged from the parent core during the gravitational collapse. These disks are expected to rotate with a sub-Keplerian speed because they are partially supported by magnetic tension against the gravity of the central star. We discuss how sub-Keplerian rotation makes it difficult to eject disk winds and accelerates the process of planet migration. Moreover, magnetic fields modify the Toomre criterion for gravitational instability via two opposing effects: magnetic tension and pressure increase the disk local stability, but sub-Keplerian rotation makes the disk more unstable. In general, magnetized disks are more stable than their nonmagnetic counterparts; thus, they can be more massive and less prone to the formation of giant planets by gravitational instability.
Cosmological numerical simulations of galaxy evolution show that accretion of metal-poor gas from the cosmic web drives the star formation in galaxy disks. Unfortunately, the observational support for this theoretical prediction is still indirect, and modeling and analysis are required to identify hints as actual signs of star-formation feeding from metal-poor gas accretion. Thus, a meticulous interpretation of the observations is crucial, and this observational review begins with a simple theoretical description of the physical process and the key ingredients it involves, including the properties of the accreted gas and of the star-formation that it induces. A number of observations pointing out the connection between metal-poor gas accretion and star-formation are analyzed, specifically, the short gas consumption time-scale compared to the age of the stellar populations, the fundamental metallicity relationship, the relationship between disk morphology and gas metallicity, the existence of metallicity drops in starbursts of star-forming galaxies, the so-called G dwarf problem, the existence of a minimum metallicity for the star-forming gas in the local universe, the origin of the alpha-enhanced gas forming stars in the local universe, the metallicity of the quiescent BCDs, and the direct measurements of gas accretion onto galaxies. A final section discusses intrinsic difficulties to obtain direct observational evidence, and points out alternative observational pathways to further consolidate the current ideas.
561 - N. Schneider 2014
We analyse column density and temperature maps derived from Herschel dust continuum observations of a sample of massive infrared dark clouds (G11.11-0.12, G18.82-0.28, G28.37+0.07, G28.53-0.25). We disentangle the velocity structure of the clouds using 13CO 1-0 and 12CO 3-2 data, showing that these IRDCs are the densest regions in massive giant molecular clouds and not isolated features. The probability distribution function (PDF) of column densities for all clouds have a power-law distribution over all (high) column densities, regardless of the evolutionary stage of the cloud: G11.11-0.12, G18.82-0.28, and G28.37+0.07 contain (proto)-stars, while G28.53-0.25 shows no signs of star formation. This is in contrast to the purely log-normal PDFs reported for near/mid-IR extinction maps. We only find a log-normal distribution for lower column densities, if we perform PDFs of the column density maps of the whole GMC in which the IRDCs are embedded. By comparing the PDF slope and the radial column density profile, we attribute the power law to the effect of large-scale gravitational collapse and to local free-fall collapse of pre- and protostellar cores. Independent from the PDF analysis, we find infall signatures in the spectral profiles of 12CO for G28.37+0.07 and G11.11-0.12, supporting the scenario of gravitational collapse. IRDCs are the densest regions within GMCs, which may be the progenitors of massive stars or clusters. At least some of the IRDCs are probably the same features as ridges (high column density regions with N>1e23 cm-2 over small areas), which were defined for nearby IR-bright GMCs. Because IRDCs are only confined to the densest (gravity dominated) cloud regions, the PDF constructed from this kind of a clipped image does not represent the (turbulence dominated) low column density regime of the cloud.
We present results from our numerical simulations of collapsing massive molecular cloud cores. These numerical calculations show that massive stars assemble quickly with mass accretion rates exceeding 10^-3 Msol/yr and confirm that the mass accretion during the collapsing phase is much more efficient than predicted by selfsimilar collapse solutions, dM/dt ~ c^3/G. We find that during protostellar assembly out of a non-turbulent core, the mass accretion reaches 20 - 100 c^3/G. Furthermore, we explore the self-consistent structure of bipolar outflows that are produced in our three dimensional magnetized collapse simulations. These outflows produce cavities out of which radiation pressure can be released, thereby reducing the limitations on the final mass of massive stars formed by gravitational collapse. Additional enhancement of the mass accretion rate comes from accretion along filaments that are built up by supersonic turbulent motions. Our numerical calculations of collapsing turbulent cores result in mass accretion rates as high as 10^-2 Msol/yr.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا